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ABSTRACT 

In this work the MHD instability problem is reviewed, given some static equilibrium parameters (𝜌0 , 𝑝0 , �⃗� 0  and 𝜐0 = 0), we 

study this equilibrium for small perturbations to see if these perturbations grow or decay. Among the several approaches, the 

energy principle is used, and the criteria for its application are recovered. This condition is applied in the study of the 

interchange, sausage and the kink instabilities. 
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320. https://doi.org/10.5281/zenodo.6639538    

 

INTRODUCTION 

We take more general review of the MHD instability problem: given some static equilibrium (𝜌0 , 𝑝0 , �⃗� 0  and 𝜐0 = 0), we 

will study this equilibrium for small perturbations to see if these perturbations grow or decay. There are two ways to do it: 

Firstly, try out the normal-mode analysis, i.e., linearize the MHD equations around the given equilibrium, and see if any of 

the frequencies turn out to be complex, with positive imaginary parts (growth rates) [9]. This approach has the advantage 

of being direct and also of yielding specific information about rates of growth or decay, the character of the growing and 

decaying modes, etc. However, for spatially complicated equilibria, this is often quite difficult to do: just being able to prove 

that some configuration is stable or that certain types of perturbations might grow [2,5]. Hence the second approach: 

Secondly check whether, for a given equilibrium, all possible perturbations will lead to the energy of the system increasing. 

If so, then the equilibrium is stable—this is called the energy principle and we shall prove it shortly. If, on the other hand, 

certain perturbations lead to the energy decreasing, that equilibrium is unstable. The advantage of this second approach is 

that we do not need to solve the linearized MHD equations in order to find instability [6, 8], just examine the properties of 

the perturbed energy functional. It should be already quite clear how to do the normal-mode analysis, at least in principle, 

so the second approach is used. 

 

Energy Principle 

 Consider what the total energy in MHD is [3]: 

   ℰ = ∫𝑑𝑟3 (
1

2
𝜌𝜐2 +

1

8𝜋
𝐵2 +

1

𝛾−1
𝑝) = ∫𝑑𝑟3 (

1

2
𝜌𝜐2 + 𝜓)                                        (1)  

As usual, all perturbations of an MHD system away from equilibrium can be expressed in terms of small displacements 𝜉, 

𝜐 =
𝜕�⃗� 

𝜕𝑡
  , and that by definition of 𝜉 we get: 

   𝜀 = ∫𝑑𝑟3 1

2
𝜌0 |

𝜕�⃗� 

𝜕𝑡
|
2

+ 𝜓0 + �̂�1[𝜉 ] + �̂�2[𝜉 , 𝜉 ] + ⋯                                                     (2) 

Where we have kept terms up to second order in 𝜉 and so 𝜓0 is the equilibrium part of 𝜓 (i.e., its value for 𝜉 = 0), �̂�1[𝜉] is 

linear in 𝜉  and �̂�2[𝜉 , 𝜉 ] is quadratic term, etc. Energy must be conserved for all orders, so: 

     
𝑑𝜀

𝑑𝑡
= ∫𝑑𝑟3  ℱ⃗ [𝜉] ∙

𝜕�⃗� 

𝜕𝑡
+ �̂�1 [

𝜕�⃗� 

𝜕𝑡
] + �̂�2 [

𝜕�⃗� 

𝜕𝑡
, 𝜉 ] + �̂�2 [𝜉 ,

𝜕�⃗� 

𝜕𝑡
] + ⋯ = 0                          (3) 
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𝑊ℎ𝑒𝑟𝑒,   𝜌0
𝜕2�⃗� 

𝜕𝑡2 ≡ ℱ⃗ [𝜉]. 

This must be true at all times, including at t = 0, when 𝜉  and 𝜕𝜉 /𝜕𝑡 can be chosen independently (MHD equations are 

second-order in time if written in terms of displacements). Therefore, for arbitrary functions 𝜉  and 𝜒 , [9]: 

    ∫𝑑𝑟3 𝜒 ∙ ℱ⃗ [𝜉 ] + �̂�1[𝜒 ] + �̂�2[𝜒 , 𝜉 ] + �̂�2[𝜉 , 𝜒 ] + ⋯ = 0                                              (4) 

 In the first order, this tells us that 

    �̂�1[𝜒 ] = 0                                                                                                                       (5)  

This means that there are no first-order energy perturbations. In the second order, we have 

   ∫𝑑𝑟3 𝜒 ∙ ℱ⃗ [𝜉 ] = −�̂�2[𝜒 , 𝜉 ] − �̂�2[𝜉 , 𝜒 ]                                                                          (6)  

Let  𝜒 = 𝜉    implies 

  �̂�2[𝜉 , 𝜉 ] = −
1

2
∫𝑑𝑟3 𝜉 ∙ ℱ⃗ [𝜉 ]                                                                                           (7) 

This is the part of the perturbed energy in Eq. (2) that can be both positive and negative.  

The energy principle implies that if: 

 �̂�2[𝜉 , 𝜉 ] > 0, for any 𝜉                                                                                                       (8) 

The result is a stable equilibrium. 

 
                                (a) Instability.                                          (b) “Over stability”  

 

Figure 1. MHD instabilities 

 

Properties of the Force Operator  

Since the right-hand side of Eq.(6) is symmetric with respect to interchanging 𝜉  ↔  𝜒  so must be the left-hand side: 

    ∫𝑑𝑟3 𝜒 ∙ ℱ⃗ [𝜉 ] = ∫𝑑𝑟3 𝜉 ∙ ℱ⃗ [𝜒 ]                                                                                      (9)  

Therefore, the force operator ℱ⃗ [𝜉] is self-adjoint. By definition: 

       𝜌0
𝜕2�⃗� 

𝜕𝑡2 ≡ ℱ⃗ [𝜉 ]                                                                                                              (10) 

The eigenmodes of this operator satisfy 

  𝜉 (𝑟, 𝑡) = 𝜉 𝑛𝑒𝑥𝑝−𝑖𝜔𝑛𝑡   ⟹  ℱ⃗ [𝜉 𝑛]  = 𝜌0𝜔𝑛
2𝜉 𝑛                                                                 (11) 

 As always for self-adjoint operators, their eigenvalues {𝜔𝑛
2} are real, and the eigenmodes {𝜉 𝑛} are orthogonal. This result 

implies that, if any MHD equilibrium is unstable, at least one of the eigenvalues must be 𝜔𝑛
2 < 0 and, since it is guaranteed 

to be real, any MHD instability will give rise to purely growing modes (Fig. 1a), rather than growing oscillations “over 

stabilities”; see (Fig. 1b).  

 

Calculation of �̂�2[𝜉 , 𝜒 ]  

Now that we know that we need the sign of �̂�2𝜉[𝜉 , 𝜒 ] to ascertain stability (or otherwise), it is worth working out �̂�2[𝜉 , 𝜒 ] 

as an explicit function of 𝜉  . It is a second-order quantity, but Eq. (7) tells us that all we need to calculate is ℱ⃗ [𝜉 ] to first 

order in 𝜉 , i.e., we just need to linearize the MHD equations around an arbitrary static equilibrium.  
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Linearized MHD Equations  

Assuming that equilibrium quantities 𝜐 0 = 0 and (𝜌0 , 𝑝0 , �⃗� 0)  are constant in time and using the general perturbations 

function as for a given mode (keeping only first order terms); 

𝑓(𝜉 , 𝑡) = 𝑓0 + 𝑓 𝑒𝑥𝑝
𝑖( �⃗�  ∙�⃗� −𝜔𝑡)

 . Hence, using 𝜐 =
𝜕�⃗� 

𝜕𝑡
    we obtain; 

𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝜐 ) = 0      ⟹    

𝜕�̂�

𝜕𝑡
= −∇⃗⃗ ∙ 𝜌0

𝜕�⃗� 

𝜕𝑡
     ⟹ �̂� = −∇⃗⃗ ∙ (𝜌0𝜉 )                              (20) 

(
𝜕

𝜕𝑡
+ 𝜐 ∙ ∇⃗⃗ ) 𝑝 = −𝛾𝑝∇⃗⃗ ∙ 𝜐                                   ⟹   �̂� = −𝜉 ∙ ∇⃗⃗ 𝑝0 − 𝛾𝑝0∇⃗⃗ ∙ 𝜉                (21) 

  
𝜕�⃗� 

𝜕𝑡
= ∇ ⃗⃗  ⃗ × (𝜐 × �⃗� )                                             ⟹       �̂� = ∇⃗⃗ × (𝜉 × �⃗� 0)                (22) 

As the second part of Eq.(1) suggest,  �̂� = ∫𝑑𝑟3 (
1

8𝜋
(𝐵2̂) +

1

𝛾−1
�̂�) must be some operator involving 𝜉 ⃗⃗ and its gradients. 

Remember �̂�, �̂� and  �̂� are all vectors expressed as linear operators in 𝜉 . 
 Finally, add gravity to the force term in the momentum equation and linearizing: 

   𝜌 (
𝜕𝜐

𝜕𝑡
+ 𝜐 ∙ ∇⃗⃗ 𝜐 ) = ∇⃗⃗ 𝑝 +

1

4𝜋
(∇⃗⃗ × �⃗� ) × �⃗� + 𝜌𝑔                                                            (23)  

This leads to: 

 𝜌0
𝜕2�⃗� 

𝜕𝑡2 ≡ ℱ⃗ [𝜉 ] = −∇⃗⃗ �̂� +
1

4𝜋
(∇⃗⃗ × �⃗� 0) × �̂� +

1

4𝜋
(∇⃗⃗ × �̂�) × �⃗� 0 + �̂�𝑔  

= ∇⃗⃗ (𝜉 ∙ ∇⃗⃗ 𝑝0 + 𝛾𝑝0∇⃗⃗ ∙ 𝜉 ) − 𝑔 ∇⃗⃗ ∙ (𝜌0𝜉 ) +
1

𝑐
𝑗 0 × �̂� +

1

4𝜋
(∇⃗⃗ × �̂�) × �⃗� 0                         (24) 

 Where  𝑗 0 =
𝑐

4𝜋
(∇⃗⃗ × �⃗� 0 ) , we have used Eq.(20) and Eq.(21) for �̂� and �̂� respectively, and �̂� is given as: 

             �̂� = ∇⃗⃗ × (𝜉 × �⃗� 0). 

 

Energy Perturbation  

Substituting Eq.(24) into Eq.(7) use integration by parts and some vector identities manipulation   to arrive at the energy 

perturbation expression,[7]: 

�̂�2[𝜉 , 𝜒 ] =
1

2
∫𝑑𝑟3 {

(𝜉 ∙ ∇⃗⃗ 𝑝0)∇⃗⃗ ∙ 𝜉 + 𝛾𝑝0(∇⃗⃗ ∙ 𝜉 )
2

+(𝑔 ∙ 𝜉 )∇⃗⃗ ∙ (𝜌0𝜉 ) +
1

𝑐
𝑗 0 ∙ (𝜉 × �̂�) +

|�̂�|2

4𝜋

}                                   (26) 

Note that two of the terms inside the integral (the second and the fifth) are positive-definite and so always stabilizing. The 

terms that are not sign definite and so potentially destabilizing involve equilibrium gradients of pressure, density and 

magnetic field (currents), [9].  

What we need to show now is to calculate �̂�2[𝜉 , 𝜒 ] according to Eq.(26) for any equilibrium that of interest and see if it 

can be negative for any class of perturbations (or positive for all perturbations). The first statement will lead to instability 

i.e. �̂�2[𝜉 , 𝜒 ] < 0 and the second will lead to stability, i.e. �̂�2[𝜉 , 𝜒 ] > 0. 
 

Interchange Instabilities  

To put the energy principle to work to classify stability, we will start to consider a purely hydrodynamic situation: the 

stability of a simple hydrostatic equilibrium describing a generic stratified atmosphere, [5]:  

𝜌0 = 𝜌0(𝑧)    and  𝑝0 = 𝑝0(𝑧)  satisfying 
𝑑𝑝0

𝑑𝑧
= −𝜌0𝑔        , (𝑔 = −𝑔�̂�)                                                                                           (27) 

 With �⃗� 0 = 0 and the hydrostatic equilibrium Eq. (27) and Eq.(26) becomes 

   �̂�2 =
1

2
∫𝑑𝑟3 {2𝑝0 

′ 𝜉𝑧∇⃗⃗ ∙ 𝜉 + 𝛾𝑝0(∇⃗⃗ ∙ 𝜉 )
2
− 𝜌0

′𝑔𝜉𝑧
2}                                                     (28)  

Where, we have used  𝜌0𝑔 = −𝑝0
′  . We see that �̂�2 depends on 𝜉𝑧 and ∇⃗⃗ ∙ 𝜉 . Let us treat them as independent variables 

and minimise  �̂�2 with respect to them (i.e., seek the most unstable possible situation): 
𝜕 �̂�2

𝜕(∇⃗⃗ ∙�⃗� )
= 2𝑝0 

′ 𝜉𝑧 + 2𝛾𝑝0(∇⃗⃗ ∙ 𝜉 ) = 0      ⟹  ∇⃗⃗ ∙ 𝜉 =
𝑝0

′

𝛾𝑝0
𝜉𝑧                                                  (29) 

 Substituting this back into Eq.(28), we get 
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�̂�2 =
1

2
∫𝑑𝑟3 (−

𝑝0
′2

𝛾𝑝0
− 𝜌0

′𝑔𝜉𝑧
2) =

1

2
∫𝑑𝑟3 𝜌0𝑔

𝛾

𝑑

𝑑𝑧
(𝑙𝑛

𝑝0

𝜌0
𝛾) 𝜉𝑧

2 =
1

2
∫ 𝑑𝑟3 𝜌0𝑔

𝛾

𝑑

𝑑𝑧
(𝑙𝑛𝑠0)𝜉𝑧

2     (30)  

Where, 𝑠0 ≡
𝑝0

𝜌0
𝛾  give the entropy function. By the Energy Principle, the system is stable if 

 �̂�2 > 0  ⟹
𝑑

𝑑𝑧
(𝑙𝑛𝑠0) > 0                                                                                                  (31)  

The inequality Eq.(31) is the Schwarzschild criterion for convective stability. If this criterion is broken, there will be 

instability, called the interchange instability. When the Schwarzschild criterion is broken  (�̂�2 < 0)  , the physical 

situation is as the following. Recalling Eq.( 20) and Eq.( 21) and take the displacements which minimize �̂�2 given by 

Eq.( 29) to get: 
𝑝

𝑝0
= −𝑝0

′𝑝0𝜉𝑥 − 𝛾∇⃗⃗ ∙ 𝜉 = 0                                                                                                 (32)  

�̂�

𝜌0
= −𝜌0

′𝜌0𝜉𝑥 − 𝛾∇⃗⃗ ∙ 𝜉 =  
1

𝛾
(−

1

𝛾

𝜌0
′

𝜌0
+

𝑝0
′

𝑝0
) =

1

𝛾

𝑑(𝑙𝑛𝑠0)

𝑑𝑧
𝜉𝑧                                                     (33) 

The found perturbations are not sound waves since there is no pressure change. They are local increase or decrease in 

density for blobs (column) of fluid that fall (𝜉𝑧 < 0) or rise (𝜉𝑧 > 0), respectively. That is, if we imagine a blob of fluid 

slowly rising (adiabatically slowly, so �̂� = 0) from the denser regions of the atmosphere to the less dense upper ones, then 

to stay in pressure balance with its surroundings will require the blob to expand (�̂� < 0) or contract (�̂� > 0). If it is the 

latter, it will fall back down, pulled by gravity; if the former, then it will keep rising (buoyantly) and the system will be 

unstable (
𝑑(𝑙𝑛𝑠0)

𝑑𝑧
< 0), see Fig.2. The direction of the entropy gradient determines which of these two scenarios is 

realized,[2].  

 
Figure 2. Interchange instability 

 

Instabilities of a Pinch 

Consider the stability of the z-pinch equilibrium, review by Haines, [4]: 

  �⃗� 0 = 𝐵0(𝑟)�̂�𝜃 ,  𝑗 0 = 𝑗0(𝑟)�̂�𝑧 =
𝑐

4𝜋

(𝑟�⃗� 0)
′

𝑟
�̂�𝑧   and  𝑝0

′ (𝑟) = −
1

𝑐
𝑗0𝐵0 = −

𝐵0(𝑟�⃗� 0)
′

4𝜋𝑟
            (34) 

 Working in cylindrical coordinates, we must first write all the terms in Eq.(26) in these coordinates using the equilibrium 

terms in Eq.(34): 

(𝜉 ∙ ∇⃗⃗ 𝑝0)∇⃗⃗ ∙ 𝜉 = 𝑝0
′ 𝜉𝑟

2

𝑟
+ 𝑝0

′ 𝜉𝑟 (
𝜕𝜉𝑟

𝜕𝑟
+

𝜕𝜉𝑧

𝜕𝑧
)                                                                             (35)  

𝛾𝑝0(∇⃗⃗ ∙ 𝜉 )
2

= 𝛾𝑝0 (
1

𝑟

𝜕(𝑟𝜉𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝜉𝜃)

𝜕𝜃
+

𝜕𝜉𝑧

𝜕𝑧
)
2
                                                                       (36)  

∇⃗⃗ × (𝜉 × �⃗� 0) = �̂�𝑟 (
1

𝑟

𝜕(𝜉𝑟𝐵0)

𝜕𝜃
) − �̂�𝜃 (

𝜕(𝜉𝑧𝐵0)

𝜕𝑧
+

𝜕(𝜉𝑟𝐵0)

𝜕𝑟
) + �̂�𝑧 (

1

𝑟

𝜕(𝜉𝑧𝐵0)

𝜕𝜃
)                               (37) 
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1

𝑐
𝑗 0 ∙ (𝜉 × �̂�) = 𝑝0

′ 𝜉𝑟 (
𝜕𝜉𝑧

𝜕𝑧
+

𝜕𝜉𝑟

𝜕𝑟
) +

𝑝0
′𝐵0

′

𝐵0
𝜉𝑟
2                                                                          (38)  

|�̂�|2

4𝜋
=

𝐵0
2

4𝜋𝑟2 {(
𝜕𝜉𝑟

𝜕𝜃
)
2
+ (

𝜕𝜉𝑧

𝜕𝜃
)
2
} +

𝐵0
2

4𝜋
(
𝜕𝜉𝑧

𝜕𝑧
+

𝜕𝜉𝑟

𝜕𝑟
+ 𝜉𝑟

𝐵0
′

𝐵0
)
2

                                                      (39)  

Combining all this together, to obtain: 

     �̂�2 =
1

2
∫𝑑𝑟3 {

2𝑝0
′ 𝜉𝑟

2

𝑟
+

𝐵0
2

4𝜋
(𝑟

𝜕

𝜕𝑟

𝜉𝑟

𝑟
+

𝜕𝜉𝑧

𝜕𝑧
)
2
                                                  

+𝛾𝑝0 (
1

𝑟

𝜕(𝑟𝜉𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜉𝜃

𝜕𝜃
+

𝜕𝜉𝑧

𝜕𝑧
)
2
+

𝐵0
2

4𝜋𝑟2 ((
𝜕𝜉𝑟

𝜕𝜃
)
2
+ (

𝜕𝜉𝑧

𝜕𝜃
)
2

)
}                    (40)  

This is the energy perturbation expression, obtained in cylindrical coordinates [7]. 

 

Sausage Instability  

Let us first consider axisymmetric perturbations: 
𝜕

𝜕𝜃 
= 0. Then �̂�2 depends on two variables only: 𝜉𝑟 and 

  𝜒 =
𝜕𝜉𝑟

𝜕𝑟
+

𝜕𝜉𝑧

𝜕𝑧
                                                                                                                       (41) 

Indeed, unpacking all the 𝑟 derivatives in Eq.(40), we get  

      �̂�2 =
1

2
∫𝑑𝑟3 {2𝑝0

′ 𝜉𝑟
2

𝑟
+

𝐵0
2

4𝜋
(𝜒 −

𝜉𝑟

𝑟
)
2
+ 𝛾𝑝0 (𝜒 +

𝜉𝑟

𝑟
)
2
}                                                 (42) 

 We shall treat 𝜉𝑟 and 𝜒 as independent variables and minimise �̂�2 with respect to𝜒: 
𝜕�̂�2

𝜕𝜒
= 2

𝐵0
2

4𝜋
(𝜒 −

𝜉𝑟

𝑟
) + 2𝛾𝑝0 (𝜒 +

𝜉𝑟

𝑟
) = 0 ⟹ 𝜒 =

1−𝛾𝛽/2

1+𝛾𝛽/2
 
𝜉𝑟

𝑟
                                             (43)  

Where, 𝛽 =
8𝜋𝑝0

𝐵0
2 .  Substituting the obtained value of 𝜒 into Eq.(42), we have: 

 �̂�2 =
1

2
∫𝑑𝑟3 𝑝0 (𝑟

𝑑𝑝0

𝑑𝑟
+

2𝛾

1+𝛾𝛽/2
)

𝜉𝑟
2

𝑟2                                                                                    (44) 

There will be instability (�̂�2 < 0) if: 

 − 𝑟
𝑑𝑝0

𝑑𝑟
>

2𝛾

1+𝛾𝛽/2
                                                                                                                   (45)  

i.e., when the pressure gradient is too steep, the equilibrium is unstable. Recall that the perturbations that we have 

identified as making �̂�2 < 0  are axisymmetric, have some radial and axial displacements and are compressible: from Eq. 

(43), 

   ∇⃗⃗ ∙ 𝜉 = 𝜒 +
𝜉𝑟

𝑟
=

2

1+𝛾𝛽/2

𝜉𝑟

𝑟
                                                                                                  (46) 

 
Figure 3.  Sausage instability 

 

They are illustrated in Fig.3. The mechanism of this aptly named sausage instability is clear: squeezing the flux surfaces 

inwards increases the curvature of the azimuthal field lines, this exerts stronger curvature force, leading to further 

squeezing; conversely, expanding outwards weakens curvature and the plasma can expand further [1]. 
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Kink Instability 

Now consider non-axisymmetric perturbations (
𝜕

𝜕𝜃
≠ 0) to see what other instabilities might exist. First of all, since we 

now have 𝜃 variation, �̂�2 depends on 𝜉𝜃. However, in Eq.(40), 𝜉𝜃 only appears in the third term, where it is part of ∇⃗⃗ ∙ 𝜉 , 

which enters quadratically and with a positive coefficient 𝛾𝑝0 We can treat  ∇⃗⃗ ∙ 𝜉  as an independent variable, alongside 𝜉𝑟 

and 𝜉𝑧, and minimise �̂�2 with respect to it. Obviously, the energy perturbation is minimal when 

       ∇⃗⃗ ∙ 𝜉 = 0                                                                                                                         (47)  

i.e., the most dangerous non-axisymmetric perturbations are incompressible. To carry out further minimization of �̂�2, it 

is convenient to Fourier transform our displacements in the 𝜃 and 𝑧 directions—both are directions of symmetry (i.e., the 

equilibrium profiles do not vary in these directions), thus: 

    𝜉 = ∑ 𝜉 𝑚𝑘(𝑟)𝑚,𝑘 𝑒𝑥𝑝𝑖(𝑚𝜃+𝑘𝑧)                                                                                         (48)  

Then Eq.(40) (with ∇⃗⃗ ∙ 𝜉 = 0) becomes, by Parseval’s theorem (the operator ℱ⃗ [𝜉]  being self-adjoint: 

�̂�2 =
1

2
∑ 2𝜋𝑙𝑧 ∫ 𝑟𝑑𝑟 {2𝑝0

′ |𝜉𝑟|
2

𝑟
+

𝐵0
2

4𝜋
(|𝑟

𝜕

𝜕𝑟
(
𝜉𝑟

𝑟
) + 𝑖𝑘𝜉𝑧|

2
+

𝑚2

𝑟2
(|𝜉𝑟|

2 + |𝜉𝑧|
2))}

∞

0𝑚,𝑘       (49) 

 As 𝜉𝑧  and 𝜉𝑧
∗ only appear algebraically in Eq. (49) (no 𝑟 derivatives), it is easy to minimize �̂�2 with respect to them: 

setting the derivative of the integrand with respect to either 

 𝜉𝑧  or 𝜉𝑧
∗ to zero, we obtain: 

          i𝑘 (𝑟
𝜕

𝜕𝑟
(
𝜉𝑟

𝑟
) + 𝑖𝑘𝜉𝑧) +

𝑚2

𝑟2 𝜉𝑧 = 0  ⟹ 𝜉𝑧 =
𝑖𝑘𝑟3

𝑚2+𝑘2𝑟2

𝜕

𝜕𝑟
(
𝜉𝑟

𝑟
)                                    (50)  

Putting this back into Eq. (49) and assembling terms, we have:  

  �̂�2 = ∑ 𝜋𝑙𝑧𝑚,𝑘 ∫ 𝑟𝑑𝑟 {2𝑝0 (
𝑟𝑝0

′

𝑝0
+

𝑚2

𝛽
)

|𝜉𝑟|
2

𝑟2 +
𝐵0

2

4𝜋
(

𝑚2

𝑚2+𝑘2𝑟2) |𝑟
𝜕

𝜕𝑟
(
𝜉𝑟

𝑟
)|

2
}

∞

0
                        (51)  

The second term here is always stabilizing. The most unstable modes will be ones with 𝑘 → ∞ for which the stabilizing 

term is as small as possible. The remaining term will allow �̂�2 < 0 and, therefore, there is instability, if: 

       −𝑟
𝑑

𝑑𝑟
(𝑙𝑛𝑝0) >

𝑚2

𝛽
                                                                                                          (52) 

 Again, the equilibrium is unstable if the pressure gradient is too steep. The most unstable modes are ones with the 

smallest 𝑚 with, 𝑚 = 1.  

The unstable perturbations are incompressible,[6]: 

∇⃗⃗ ∙ 𝜉 = 0   ⟹
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜉𝑟) +

𝑖𝑚

𝑟
𝜉𝜃 + 𝑖𝑘𝜉𝑧 = 0                                                                      (53) 

 
Figure 4. Kink instability 

 

Setting, 𝑚 = 1 and using Eq.(50), we get:  

    (𝑖𝜉𝜃)𝑘→∞ ≈ −
𝜕

𝜕𝑟
(𝑟𝜉𝑟) + 𝑟2 𝜕

𝜕𝑟
(
𝜉𝑟

𝑟
) ≈ 2𝜉𝑟   and  𝜉𝑧 ≪ 𝜉𝑟                                          (54) 

The instability action is as follows: the flux surfaces are bent, with a twist (to remain uncompressed). The bending pushes 

the magnetic loops closer together and thus increases magnetic pressure in concave parts and, conversely, decreases it in 
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the convex ones. Plasma is pushed from the areas of higher �⃗�  to those with lower �⃗� , thermal pressure in the latter (convex) 

areas becomes uncompensated; the field lines open up further, etc. This is called the kink instability, [10]; see Fig.4.  

 

CONCLUSION 
Among the several approaches, the energy principle is used. The energy principle is applied in the study of the interchange, 

sausage and the kink instabilities. We study this equilibrium for small perturbations to see if these perturbations grow or 

decay. 
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