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Abstract 

Employing in-silico programs and Machine Learning (ML) in microbiology, making computational 

microbiology (dry lab), is changing the way the data is investigated, visualized, and used. Complicated 

biological datasets are increasing over time due to discoveries. ML models such as Decision Trees (DT) 

and Artificial Neural Networks (ANN) have predictive algorithms for many applications in microbiology, 

such as antimicrobial resistance (AMR), pathogen detection, and microbiome characterization. 

Moreover, ML can help in identifying biomarkers, enhancing diagnosis, and visualizing microbial 

interactions. Although this technology has significant advantages, it still presents some issues, 

including ethical and legal concerns, missing analyzed data, and the model's efficiency. Besides ML 

models, in-silico programs such as digital plate reading (DPR), statistical, and genomic comparison 

programs improve the processing and visualization of the data. Regardless of the challenges, this 

technology is always progressing, and the increased data accessibility is used to support dependable 

AI microbiological applications and public health. 
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Introduction 
Microorganisms are among the most primitive organisms to exist on Earth, having first appeared about 3.5 
billion years ago [1]. In a microbial community, several species influence one another's development to create 

symbiosis. These ecosystem networks control the structural and functional characteristics of a community 

[2]. Conventional microbiological tests typically provide qualitative or semi-quantitative documentation, 

needing a high level of skill and a longer time for interpreting and analyzing the results, and until laboratory 

tests can be conducted, predictions based on biological data might not be confirmed [3]. A fundamental 

change toward algorithmic methodologies for effective data interpretation is required as we enter this era 
due to the enormous amount of biological data obtained from high-throughput technology [4]. In 

microbiology, machine learning (ML) is an important subject under artificial intelligence (AI), and it is one 

of the most rapidly increasing methods. [2]. Sophisticated algorithms are used in machine learning to allow 

the examination of large, complicated datasets for pattern detection and knowledge discovery [5]. The best 

way to analyze and comprehend this vast and increasingly complicated data, sometimes referred to as big 
data, frequently surpasses human capabilities and calls for the deployment of tools like ML [6]. The growing 

number of ML applications makes it impossible to even quantify them. Growing applications are an example 

of ML's significance to microbiology. The main goal of machine learning in microbiology is to identify the 

model that best matches the data. To forecast future data, we fit a model to the historical data. Additionally, 

unsupervised machine learning algorithms aim to uncover hidden connections between data and structural 

objects through similarities or contrasts [7]. In this mini-review, we discussed the potential of machine 
learning, including topics such as pathology, rapid diagnostics, microbiome research, precision medicine, 

and minimizing antibiotic resistance (AMR). This could transform our understanding of microbial 

ecosystems, diagnosis, and potentially treatment. It will involve a thorough review of recent literature, as 

well as the identification and assessment of machine learning techniques employed in computational 

microbiological research.  
 

Types of Machine Learning Algorithms Used 

The two primary learning modes in machine learning are predictive, which is supervised learning, that uses 

training data to anticipate future events, and descriptive is unsupervised learning, which is experimental 

and lacks data for training, a target, or a result [8]. Additionally, to machine learning, there are deep learning 

(DL), and reinforcement learning (RL). Every field of microbiological studies, including bacteriology, 
parasitology, virology, and mycology, has employed machine learning [2]. ML algorithms can generate unique 

rules by analyzing the data, in contrast to expert systems that are dependent on programming a set of rules 

[6]. Black-box models are models that don't explicitly explain how or why they make a certain prediction, 

yet they produce the most accurate machine-learning predictions. On the other hand, predictions that are 

made by the white-box models are significantly less accurate but simpler to understand [9]. As it was 
mentioned before, there are supervised ML and unsupervised ML algorithms, for example, types of 

algorithms used in supervised ML are Decision Trees (DT), ridge regression, eXtreme Gradient Boosting 

(XGBoost), Artificial Neural Networks (ANN), Convolutional Neural Network (CNN), Logistic Regression (LR), 

Naive Bayes (NB), K-Nearest Neighbors (K-NN), Support Vector Machines (SVM) and, random forests are 
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used for predictive modeling. As for unsupervised ML: Clustering, dimensionality reduction, and association 
analysis [10,11]. Standardization methods are used for preprocessing, while LASSO is used for single feature 

selection, and Schipper Eggli Sandoz (SES) is used for multiple feature selection. For model assessment, 

there is Generalized cross-validation used for Performance estimation, Grid search with heuristics is used 

for configuration space search, lastly, BBC-CV is used for performance correction [12]. The majority of 

unsupervised machine learning applications in microbiology use clustering or dimensionality 
reduction/ordination techniques. A popular unsupervised learning method for spotting patterns in high-

dimensional data is clustering, which finds data clusters with the most closely related data in each cluster 

[2]. As for supervised learning, it is the most used in microbial research. For instance, a microbiologist can 

label photomicrographs as they can be holding or not holding a particular microbe of interest. The images 

can then be used as a source to create a machine-learning algorithm that can identify the microbe [13].  

 
In-Silico Platforms for Microbial Prediction 

It quickly became clear that true in silico experiments and using computers should be developed, starting 

with data analysis and storage, as in vivo and in vitro experiments were the norm.  [14]. For microbiologists 

and other scientific researchers, the increasing need for digital microbiological data offers an exceptional 

opportunity [15]. The development of digital microbiology could have a big impact on monitoring infections 
and public health [16]. As clinical microbiology labs continue to move toward increased automation, digital 

plate reading (DPR) computer vision software is used to provide the next efficiency boost and is already 

making progress in these labs [17]. The statistical test ANOVA was applied to evaluate the differences in A. 
hydrophila bacterial shelf life and microbiological load in sardines stored at various temperatures [18]. 

Additionally, comparison methods are essential for determining the microbial phylogenomics of pathogenic 

isolates and creating complex networks that illustrate how different patients spread during epidemics [19].  

 
Role of Machine Learning in Microbial Prediction   
Predicting Antimicrobial Resistance 

Microbiology provides the potential answers for the prevention and treatment of diseases. Antimicrobial 

resistance (AMR), which develops when microbes adapt to decrease or completely eradicate the effectiveness 

of antimicrobial medications, is one of the biggest healthcare issues [2]. Antibiotic-resistant bacteria are the 
primary cause of antibiotic resistance, which occurs due to the consumption of antibiotics, causing bacteria 

to change their genetic makeup [20]. With little assistance from humans, AI increased the precision of 

predicting antimicrobial resistance (AMR) trends and enhanced the overall effectiveness of treatments [3]. 

ML and AI are essential to the healthcare system because they protect individuals against multi-resistant 

microbes and antimicrobial resistance (AMR) while also promoting the health of plants, animals, and 

ecosystems [21]. Additionally, combining AI with technologies like matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has benefited AMR profiling and 

microbiological identification, providing quick and affordable solutions [22,23]. An ML-based model was 

developed, which is a diagnostic model that was based on a random forest algorithm. The 44 criteria 

available at the time of admission to the hospital were taken into consideration. The model anticipated a 

30% decrease in the use of antibiotics in cases of nonpathogenic SIRS and took into consideration the early 
detection of all sepsis illnesses [24]. Therefore, AI and ML could be used as a tool to fight high AMR rates 

[11]. Additionally, ML has been used to predict AMR in organisms such as nontyphoidal Salmonella and M. 
tuberculosis, with known resistance pathways [25]. Instead of accurately predicting resistance, the study's 

objective was to extract important insights from AMR genomic data by using machine learning (ML) models 

to identify known AMR-implicated genes of M. tuberculosis and to identify new acknowledged AMR 

determinants and resolve interactions driving AMR evolution.[26]. Nevertheless, any mistake made in any 

of the previously described phases leads to incorrect identification and diagnosis, which is then linked to a 
poor prognosis, unsuccessful treatments, and the development of antimicrobial resistance [27]. 

 
Pathogen Detection and Classification 
Infectious agent identification is a multilevel procedure that requires careful sample handling and collection 

before appropriate laboratory culturing and staining methods, imaging, and molecular analysis [28]. 

Predicting disease outbreaks and accurately identifying and characterizing pathogens are essential stages 
in resisting the threat [2]. AI can anticipate the diagnosis and prognosis of diseases and assist in the creation 

of customized treatment plans. It can help identify epidemics and develop efficient infection control 

measures, which can greatly aid in infection prevention and control [29,4]. The research studies involve 

viruses, bacteria, protozoa, fungi, and helminths in the fields of epidemiology, clinical applications, antibiotic 

resistance, medicine and vaccine development, climate change, microorganisms in plants, microbiomes, and 
taxonomy [2]. Moreover, to enhance the automated recovery and prediction of bacteriophages, several 

computational methods based on machine-learning techniques have been created [5]. Annotation and 

sequence signature data from previously found bacteriophages are used by MARVEL (Metagenomic Analysis 

and Retrieval of Viral Elements), an ML-based algorithm, to identify double-stranded bacteriophages in 

metagenomic bins [30]. Fourier-transform infrared spectroscopy (FTIR) features were combined with 
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machine learning (ML) approaches to demonstrate the viability of tracking microbes in foods under variable 
storage conditions [10].  

In comparison with bacteriological examination, specimens for Mycobacteria Identification with the help of 

Deep Learning in Pathology improve accuracy in early pulmonary tuberculosis diagnosis [31]. In addition, 

it was created and verified by researchers a DL algorithm to check for mycobacteria in sections of tissue on 

digital acid-fast-stained (AFS) slides [32]. To anticipate and view bacterial infection, a study developed a 
deep neural network called AI-based bacterial infection detection using whole Slide Images, which uses 

hematoxylin and eosin-stained pathology slides. This is the first AI-based model to examine bacterial 

infections in pathology images [33]. Many pathology labs have established digital pathology systems that 

use artificial intelligence (AI) software to enhance the detection of pathogens on cytological and histological 

slides [34].  When it comes to plants, machine learning (ML) helps with early field-level identification of plant 

viral infections by evaluating hyperspectral images. ML can also help us predict the subcellular location as 
well as the structure of the viral proteins. Finding inhibitors of these effector proteins may be made easier 

with the correct structural prediction of virus-encoded proteins [35].  

 

Microbiome Profiling and Interaction Networks 

Microbiomes, or communities of microorganisms inhabiting a host organism's ecosystems, are capable of 
communicating with their host in complicated and meaningful ways that affect the host's behavior, 

immunological response, metabolism, and digestion [36]. Identifying the distinct qualities of the microbiome 

may help to recognize and identify the disease-associated microbiome because a healthy microbiome can be 

detected through a number of shared traits with non-healthy people [37]. The sophisticated structure of 

microbiome data shows that species may engage in a variety of interactions with one another, such as 

rivalry, parasitism, commensalism, and mutualism [12]. Microorganisms and their genomes, commonly 
referred to as the microbiome, are the subject of increased investigation due to advancements in 

metagenomics and genome sequencing platforms [2]. In microbiome studies, the most frequent ML tasks 

that are used are those that deal with disease diagnosis, prediction, or treatment response [38]. Identifying 

diagnostic or predictive biomarkers in the microbiome—that is, the informative characteristics (genes, taxa, 

or functions) most closely linked to a disease, phenotype, environmental factor, or response to treatment—
is possible with machine learning. [12].  

Establishing a prediction algorithm, a performance evaluation process, a model selection protocol, and a 

performance optimization metric are all part of the modeling activity. The models demonstrated a high degree 

of accuracy in distinguishing between multiple kinds of cancer and between cancer and normal tissue, 

indicating that microbial signatures are specific to each type of cancer. However, they fell short in 

distinguishing between distinct stages of the same cancer type, indicating that microbial signatures may 
not be correlated with cancer phases for all types of cancer [39]. The suggested ML approach could 

potentially be used as a cancer diagnostic tool based on the microbiome. A demonstration of how to use RF 

to anticipate microbial interactions, knowing each community organism's characteristic identifiers [40]. 

Selecting a predicting algorithm that is naturally comprehensible, such as decision trees, logistic regression, 

or linear SVMs, is one method to guarantee interpretability. Understanding the connections between the 
microbiome features and the result is made easier by these models' intuitive link between the input and the 

output [12].  

 

Challenges and Limitations 
Predictive ML models also can present some drawbacks, for instance, it may be difficult to detect and reduce 

bias in AI models used for microbiological applications due to possible bias in training data that affects 
results. Low-quality microbiological data availability and insufficiently structured datasets for machine 

learning model training [10]. Data management issues include gathering, ensuring quality, storing, and 

protecting data as a result of the digitization of microbiology diagnostic procedures [41]. In terms of AI and 

ML in microbiology, the future will bring more thorough discussions and possibly new rules around the 

privacy of data, ethical issues, and patient authorization [42]. Moreover, in fields like gene editing and 

synthetic biology, legislation and regulations are falling behind technological developments, thereby creating 
threats and uncertainty [10]. Many of these technologies need an external dataset to test their particular 

algorithms in a clinical setting, in addition to the limited case studies [35]. 

 

Conclusion and Future Perspectives 
Given the promise to improve research, diagnosis, and treatment, artificial intelligence and machine learning 

have been included in microbiology more and more. A critical viewpoint, however, highlights both the 

benefits and drawbacks of this integration. Scientists are visualizing a time when microbiological research 

and practice are heavily reliant on artificial intelligence and machine learning, necessitating the need for 

more readily available databases. For AI models to be reliable and generalizable, they need to be thoroughly 
validated using a variety of high-quality datasets [10]. Furthermore, the majority of ML, DL, and AI 

technologies used up to this point have been either supervised or semi-supervised, requiring specialized 
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professionals to name and analyze the results [35]. It is essential to create self-updating, flexible AI models 
that can operate in a variety of healthcare settings, assuring comfort and privacy. 
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