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Abstract 
The present work is a source rock assessment of the Hot Shale Member of the Tanezzuft Formation 
(Early Silurian) using data obtained from wells B1-23 and Q1-23, Ghadames Basin, NW Libya. The 

geochemical data obtained from HAWK instrument analysis done by Sirte Oil Company on a number 
of shale samples representing the Hot Shale Member. In terms of organic richness, the Hot Shale 
Member falls between good and excellent based on the TOC values (1.05-12.39%). The binary plot of 
TOC versus PP backs up this assumption. In terms of kerogen type, the HI values (126-794 mg/g) 
display the ex-istence of different types of kerogens, such as types I, II, and III. The binary plots of 
Tmax versus HI, TOC versus S2, and OI versus HI offer more proof for this hypothesis. In terms of 
indigeneity, the dominance of indigenous hydrocarbons is suggested by the S1/TOC ratio (0.16-0.81). 
The binary plot of TOC versus S1 lends credence to this assumption. In terms of thermal maturity, 
the values of Tmax (417-441 oC) and Ro (0.3-0.78%), and the binary plots of Tmax versus HI, Tmax 
versus Ro, and PI versus Tmax indicate that the samples of well Q1-23 are primarily contain mature 
organic matter, whereas the majority of the samples of well B1-23 contain immature organic matter. 
In terms of petroleum potential, the Hot Shale Member exhibits a variety of petroleum potential, as 
shown by the binary plot of TOC versus HI. In terms of kinetic parameters, the activation energies 
(47-84 kcal/mol) have a gaussian shape. 
Keywords. Organic Geochemistry, Source Rock, Hot Shale Member, Tanezzuft Formation, Ghadames 
Basin, Libya. 

 

Introduction 
Desio [1] provided the first definition of the Tanezzuft Formation. The Wadi Tanezzuft in the Murzuq Basin 

is the type locality; however, Desio [1] did not identify the base and top of the formation at the type locality. 

Klitzslch [2] described the complete section of the formation at south Ghat. In this site the total thickness 

is 370 m and the formation is mainly composed of graptolitic shales with lesser amounts of siltstone and 

sandstone. There is an unconformable contact with the underlying Mamuniyat Formation, while there is a 
gradual transition with the overlying Akakus Formation [1]. There are two members of the Tanezzuft 

Formation; the Hot Shale Member at the base and the Cold Shale Member on top. The Hot Shale Member is 

composed of black shale that has high TOC content. The member is distinguished by unusually high 

radioactivity levels that are strongly linked to uranium existence [3]. Based on the palynostratigraphic and 

palynofa-cies, El Diasty [4] proposed ages of Early-Middle Rhuddanian (Early Silurian) and Late 

Rhuddanian-Telychnian (Early Silurian) for the Hot Shale Member and the Cold Shale Member, respectively. 
The sedimentological characteristics suggested that the Hot Shale Member was deposited in restricted to 

open marine environments [5]. 

The Ghadames Basin is considered one of the main sedimentary basins in Libya. It is a sizable intracratonic 

sag basin. It has an area of 350,000 km2. The depocentre of the basin is situated in Algeria. The eastern 

side of the basin is represented by the Libyan part, which rises to the Tripoli–Tibisti Arch and including the 
Zamzam Depression which stretches towards the east [6]. Up to 21,000 ft of basin-fill can be found in 

Algeria, but no more than 18,000 ft can be found in Libya. Its boundaries are the Dahar–Nafusah Arch to 

the north, the Hoggar Massif in Algeria and the Qarqaf Arch in Libya to the south, and the Amguid-El Biod 

Uplift in Algeria to the west. The basin protrudes beneath the western portion of the Sirte Basin to the east. 

Fig. 1 shows the time stratigraphic chart of west Libya. 

The Ghadames Basin contains large reserves of gas (2.4 Tcf) and oil (64 MM bbl of oil and 39 MM bbl of 
condensates) in Libya. The majority of the Libyan discoveries are found in the Silurian and Devonian 

reservoirs, with minor discoveries in the Triassic deposits [6]. There are two proved source rocks in the 

Ghadames Basin: (1) The Hot Shale Member of the Tanezzuft Formation (Early Silurian); and (2) The 

Awaynat Wanin/Frasnian Shale (Late Devonian). 

 
In this work, a geochemical evaluation of the Hot Shale Member of the Tanezzuft Formation was conducted 

in wells B1-23 and Q1-23, Ghadames Basin, NW Libya (Fig. 2). This evaluation included the following: (1) 

Organic richness; (2) Kerogen type; (3) Indigeneity; (4) Thermal maturity; (5) Petroleum Potential; and (6) 
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Kinetic Parameters. Fig. 3 shows regional correlation of gamma-ray profiles through the Hot Shale Member 

between the studied wells and wells J1-23, A1-61, and E1-23. 
 

 
Figure 1. Time stratigraphic chart of west Libya (bold lettering indicates petroleum reservoir; 

italic script indicates source rock) (after [19-21]). 
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Previous Work 

With the exception of wells B1-23 and Q1-23, there have been numerous prior geochemical studies of the 
Hot Shale Member in many wells in the Ghadames and Murzuq basins [7-18]. 

 

Methods 
In this study, geochemical data provided by Sirte Oil Company were used. The following steps were followed 
in order to complete the current work: 

(1) Seventeen cutting shale samples were selected from wells B1-23 (at depths 4595.28 to 4733ft) and Q1-

23 (at depths 9652 to 9773.62ft). 

 

 
Figure 2. Location map of wells B1-23, Q1-23J1-23, A1-61, and E1-23. 

 

 
Figure 3. Regional correlation of gamma-ray profiles through the Hot Shale Member in five wells 

in the Ghadames Basin. 
 

(2) The HAWK Pyrolysis was used to determine the values of TOC, S1, S2, S3, Tmax, Ro, HI, OI, PI, CaCO3, 

CC, AI, GOC, NGOC, OSI, and PCI. 

(3) Four distinct HAWK pyrolysis heating rates (5, 10, 15, 25, and 50 °C/min) were used to analyze the 

entire rock samples for bulk kinetics modeling. The bulk kinetic model, which consists of a single frequency 

factor and an activation energy distribution, uses the produced bulk petroleum formation curves as input. 
Kinetics 2015 software is being used. 

(4) Statistical treatment was carried out using the SPSS© program. 

(5) The TOC, HI, and Tmax maps were drawn using the ArcMap 10.5 program. 
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RESULTS AND DISCUSSION 

Statistical Treatment 
The data obtained from the HAWK pyrolysis technique are listed in Tables 1 and 2. The statistical treatment 

included descriptive statistics (Table 3), correlation matrix (Table 4), principal component analysis (Table 5 

and Fig. 4), and cluster analysis (Fig. 5 and Table 6). 

 

Table 1. HAWK pyrolysis data of the Hot Shale Member in wells B1-23 and Q1-23  

Well ID Sample ID Depth (ft) TOC S1 S2 S3 PP OI HI Tmax 

Q1-23 

2942-9652 9652 1.05 0.38 2.38 0.12 2.76 11 225 441 

2951-9682 9682 3.87 3.14 22.4 0.6 25.5 15 578 439 

2954-9691 9691 1.71 0.74 4.84 0.37 5.58 21 283 440 

9692 9692 1.89 0.79 5.58 0.49 6.37 25 294 440 

2964-9724 9724.4 9.94 5.15 23.4 1.24 28.6 12 235 439 

9744 9744 11.07 2.64 23.9 1 26.5 9 215 437 

2976-9763 9763 4.4 1.23 9.23 0.81 10.5 18 209 437 

9764 9764 4.19 1.33 10 0.67 11.3 16 238 439 

2979-9773 9773.62 6.84 1.59 8.64 2.87 10.2 41 126 430 

B1-23 

1401-07 4595.28 2.16 0.43 6.88 0.6 7.31 27 317 432 

1410-16 4625 2.26 0.57 6.47 0.32 7.04 14 286 432 

1419-25 4654.32 3.48 0.93 12.9 0.35 13.8 10 369 431 

4674 4674 2.47 1.35 19.6 0.51 21 21 794 425 

1428-34 4683.84 11.91 3.05 59.1 0.95 62.1 8 495 428 

1434 4703.52 9.75 3.29 60.1 1.15 63.4 11 615 423 

1437-43 4713.36 12.39 4.13 73.5 1.99 77.7 16 593 421 

4733 4733 5.34 0.84 28.3 1.38 29.2 26 531 417 

 

Table 2. HAWK pyrolysis data of the Hot Shale Member in wells B1-23 and Q1-23  

Well ID Ro AI CaCO3 CC GOC PI NGOC OSI PCI 

Q1-23 

0.78 0.86 3 0.36 0.26 0.14 0.79 36.2 2.29 

0.74 3.17 39.8 4.77 2.21 0.12 1.66 81.1 21.2 

0.76 1.4 6.92 0.83 0.5 0.13 1.21 43.3 4.63 

0.76 1.55 19.8 2.38 0.57 0.12 1.32 41.8 5.29 

0.74 8.15 6.33 0.76 2.48 0.18 7.47 51.8 23.7 

0.71 9.08 7.68 0.92 2.3 0.1 8.77 23.9 22 

0.71 3.61 6.2 0.74 0.93 0.12 3.47 28 8.68 

0.74 3.43 10.78 1.29 1 0.12 3.18 31.7 9.41 

0.58 5.61 2.21 0.26 1 0.16 5.84 23.3 8.49 

B1-23 

0.62 1.77 3.06 0.37 0.65 0.06 1.51 19.9 6.07 

0.62 1.86 3.34 0.4 0.62 0.08 1.64 25.2 5.84 

0.6 2.86 8.39 1 1.19 0.07 2.29 26.7 11.5 

0.5 2.03    0.06  54.7 17.4 

0.54 9.77 12.6 1.51 5.33 0.05 6.58 25.6 51.6 

0.5 8 55.6 6.67 5.46 0.05 4.29 33.7 52.6 

0.42 10.2 70 8.4 6.71 0.05 5.69 33.3 64.5 

0.3 4.38    0.03  15.7 24.2 

(AI = adsorption index; CaCO3 = calcium carbonate equivalent (wt%); CC = carbonate carbon (wt%); GOC = 
generative organic carbon; HI = hydrogen index (mg/g); NGOC = non-generative organic carbon; OI = oxygen 
index (mg/g); OSI = oil saturation index; PCI = pyrolyzable carbon index (mg/g); PI = production index; PP = 
petroleum potential (mg/g); Ro = vitrinite reflectance (wt%); S1 = quantity of free hydrocarbons (mg/g); S2 = 

quantity of thermally generated (cracked) hydrocarbons (mg/g); S3 = quantity of CO2 generated during 
pyrolysis (mg/g); Tmax = temperature at which maximum rate of generation of hydrocarbons occurs (oC); TOC = 

total organic carbon (wt%)) 

 

The descriptive statistics show that there is a large variation in the values of analyzed parameters. This large 
range indicates a variation in the organic richness, petroleum potential, and thermal maturity as well as the 

presence of different kerogen types. In the correlation matrix, S1 and S2 have positive correlations with TOC 

(r = 0.83 and 0.82, respectively), which indicates the influence of S1 and S2 from TOC. Moreover, the weak 
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negative correlation shown by Tmax and Ro with TOC (r = −0.39 and −0.37, respectively) suggests that thermal 

maturity is unaffected by the amount of organic matter. 
 

Table 3. Descriptive statistics of the analyzed parameters 

Parameters N Minimum Maximum Mean 

TOC 17 1.05 12.4 5.57 

S1 17 0.38 5.15 1.86 

S2 17 2.38 73.5 22.2 

S3 17 0.12 2.87 0.91 

PP 17 2.76 77.7 24 

OI 17 8 41 17.7 

HI 17 126 794 377 

Tmax 17 417 441 432 

Ro 17 0.3 0.78 0.62 

AI 17 0.86 10.2 4.57 

CaCO3 15 2.21 70 17.1 

CC 15 0.26 8.4 2.04 

GOC 15 0.26 6.71 2.08 

PI 17 0.03 0.18 0.1 

NGOC 15 0.79 8.77 3.71 

OSI 17 15.7 81 34.5 

PCI 17 2.29 64 20 

 

Table 4. Correlation matrix of the analyzed parameters 

 TOC S1 S2 S3 OI HI Tmax Ro AI CaCO3 

TOC 1.00          

S1 0.83 1.00         

S2 0.82 0.71 1.00        

S3 0.61 0.44 0.42 1.00       

OI -0.30 -0.37 -0.35 0.50 1.00      

HI 0.17 0.27 0.61 -0.04 -0.18 1.00     

Tmax -0.39 -0.14 -0.64 -0.46 -0.15 -0.65 1.00    

Ro -0.37 -0.11 -0.61 -0.47 -0.19 -0.63 0.99 1.00   

AI 1.00 0.83 0.82 0.61 -0.31 0.17 -0.39 -0.37 1.00  

CaCO

3 

0.37 0.35 0.69 0.33 -0.01 0.84 -0.72 -0.72 0.37 1.00 

 
The principal component analysis yielded three components. A simplified explanation of these components 

is given below: 

First principal component (PC1): It is the most potent component, making up roughly 59.61% of the 

variables. Positive loading is seen for TOC, S1, S2, PP, HI, AI, CaCO3, CC, GOC, and PCI in this component. 

Furthermore, it loads negatively for Tmax and Ro. This component appears to be important for interpreting 

the organic richness, petroleum potential, thermal maturity and kerogen type. 
Second principal component (PC2): 15.62% of all variables are accounted for by this component. Positive 

loading is evident for S3 and NGOC. HI exhibits negative loading. It seems that this component is also 

essential to comprehending the kerogen type. 

Third principal component (PC3): This component clarifies 12.8% of all variables. For OSI, negative loading 

is obvious. This component is essentially irrelevant. 
The dendrogram cluster analysis divided the TOC content into three different groups, while the division of 

the rest of the source rock properties is unclear. Below is a description of the three TOC groups: 

Group I: The samples of this group have the lowest TOC content (1.05-2.47%). 

Group II: Compared to Group I, this group contains more TOC content (3.48-6.84%). 

Group III: The highest TOC content (9.75-12.39%) is found in this group. 

 
Table 5. Principal component analysis of the analyzed parameters 

Eigenvalues 10.13 2.65 2.18 

% of Variance 59.61 15.62 12.80 

Cumulative % 59.61 75.22 88.03 
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Principal 

components 

PC1 PC2 PC3 

TOC 0.87 0.44 0.15 

S1 0.77 0.24 0.55 

S2 0.99 -0.07 0.01 

S3 0.50 0.66 -0.12 

PP 0.99 -0.05 0.05 

OI -0.32 0.34 -0.34 

HI 0.75 -0.62 0.06 

Tmax -0.80 0.01 0.55 

Ro -0.80 -0.02 0.56 

AI 0.87 0.44 0.15 

CaCO3 0.79 -0.43 0.11 

CC 0.79 -0.43 0.11 

GOC 0.99 -0.04 0.04 

PI -0.56 0.45 0.58 

NGOC 0.59 0.74 0.20 

OSI -0.01 -0.40 0.82 

PCI 0.99 -0.05 0.05 

 

 
Figure 4. Plot of PC loadings of the analyzed parameters. 

 

Organic Richness 

Petroleum should be produced in proportion to the amount of organic richness in the source rock since it is 

a byproduct of the organic matter that are distributed in the source rock [22]. The TOC content of 
sedimentary rocks is a crucial criterion for assessing their organic richness because it is a prerequisite for 

the production of oil or gas [23]. Peters and Cassa [24] categorized the organic richness into five classes 

based on the TOC content: (1) Poor (TOC ranges from 0 to 0.5%); (2) Fair (TOC ranges from 0.5 to 1%); (3) 

Good (TOC ranges from 1 to 2%); (4) Very good (TOC ranges from 2 to 4%); and (5) Excellent (TOC>4%). The 

TOC values (1.05-12.39%) indicate that the organic richness of the Hot Shale Member ranges from good to 
excellent. This hypothesis is confirmed by the binary plot of TOC versus PP (Fig. 6). The TOC map is shown 

in Fig. 7. 
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Figure 5. Dendrogram from cluster analysis (Ward method) of the analyzed parameters. 

 
Table 6. Cluster analysis of the analyzed parameters 

Parameters Group I Group II Group III 

TOC 1.05-2.47 3.48-6.84 9.75-12.4 

S1 0.38-1.35 0.84-3.14 2.64-5.15 

S2 2.38-19.6 8.64.28.3 23.4-73.5 

S3 0.12-0.6 0.35-2.87 0.95-1.99 

PP 2.76-21 10.2-29.1 26.5-77.7 

OI 11-27 10-41 8-16 

HI 225-794 126-578 215-615 

Tmax 425-441 417-439 421-439 

Ro 0.5-0.78 0.3-0.74 0.42-0.74 

AI 0.86-2.03 2.86-5.61 8-10.2 

CaCO3 3-19.8 2.21-39.8 6.33-70 

CC 0.36-2.38 0.26-4.77 0.76-8.4 

GOC 0.26-0.65 0.93-2.21 2.3-6.71 

PI 0.06-0.14 0.03-0.16 0.05-0.18 

NGOC 0.79-1.64 1.66-5.84 4.29-8.77 

OSI 19.9-54.7 15.7-81.1 23.9-51.8 

PCI 2.29-17.4 8.49-24.2 22-64.5 

 

Kerogen Type 
The portion of organic matter found in sedimentary rocks known as kerogen is insoluble in typical organic 

solvents. Kerogens are composed of various organic matter [22]. Based on the HI values, Peters and Cassa 

[24] classified kerogen into five classes: (1) Type I (HI>600 mg/g); (2) Type II (HI ranges from 300 to 600 

mg/g); (3) Type II-III (HI ranges from 200 to 300 mg/g); (4) Type III (HI ranges from 50 to 200 mg/g); and (5) 

Type IV (HI<50 mg/g). In the Hot Shale Member, the presence of various kerogen types, including types I, 
II, and III, is indicated by the HI values (126-794 mg/g). The binary plots of OI versus HI (Fig. 8), TOC versus 

S2 (Fig. 9), and Tmax versus HI (Fig. 10) provide additional evidence for this assumption. Fig. 11 shows the 

HI map. 

 

Indigeneity 

Hydrocarbons in source rocks are classified into: (1) Indigenous hydrocarbons; and (2) Nonindigenous 
hydrocarbons. The S1/TOC ratio has been used to determine the type of hydrocarbons. Values below 1.5 

are thought to represent indigenous hydrocarbons, while values above 1.5 are indicative of nonindigenous 

hydrocarbons [25]. In the Hot Shale Member, the S1/TOC ratio ranges from 0.16 to 0.81, indicating the 

dominance of indigenous hydrocarbons. The binary plot of TOC versus S1 (Fig. 12) supports this hypothesis. 
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Figure 6. Binary plot of TOC vs. PP showing the organic richness of the Hot Shale Member (fields 

after [22]). 

 

 
Figure 7. TOC map between the studied wells. 

 

 
Figure 8. Binary plot of OI vs. HI showing the kerogen type for the Hot Shale Member (fields after 

[26]). 
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Figure 9. Binary plot of TOC vs. S2 showing the kerogen type for the Hot Shale Member (fields 

after [27]). 

 

 
Figure 10. Binary plot of Tmax vs. HI showing the kerogen type and thermal maturity for the Hot 

Shale Member (fields after [28]). 

 

 
Figure 11. HI map between the studied wells. 
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Figure 12. Binary plot of TOC vs. S1 showing the hydrocarbon type in the Hot Shale Member 

(fields after [25]). 
 

Thermal Maturity 

Thermal maturity refers to how much the chemical composition of organic matter is altered by heat 

reactions. Source rock maturation, reservoir diagenesis, and porosity development are all influenced by 

thermal maturity and burial history [29]. Numerous parameters, such as Tmax and Ro can be used to assess 
the degree of thermal maturity of organic matter [24]. Based on the values of Tmax and Ro, Peters and Cassa 

[24] identified six grades of maturity (Table 7). The binary plots of Tmax versus HI (Fig. 10), Tmax versus Ro 

(Fig. 13), and PI versus Tmax (Fig. 14) indicate that most of the samples of well B1-23 contain immature 

organic matter, while mature organic matter predominate in the samples of well Q1-23. The values of Tmax 

(417-441 oC) and Ro (0.3-0.78%) support the aforementioned assumption. Fig. 15 presents the Tmax map. 

 
Table 7. Geochemical parameters characterizing the degree of thermal maturity (after [24]) 

Degree of thermal 

maturity 

Ro (%) Tmax 

(oC) 

Immature 0.2-0.6 <435 

Early mature 0.6-0.65 435-445 

Peak mature 0.65-0.9 445-450 

Late mature 0.9-1.35 450-470 

Postmature >1.35 >470 

 

 
Figure 13. Binary plot of Tmax vs. Ro showing the thermal maturity for the Hot Shale Member 

(fields after [30]). 
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Figure 14. Binary plot of PI vs. Tmax showing the thermal maturity for the Hot Shale Member 

(fields after [31]). 
 

 
Figure 15. Tmax map between the studied wells. 

 

Petroleum Potential 

As mentioned previously in this work, the Hot Shale Member contains different types of kerogen in addition 
to variations in TOC content and levels of thermal maturity. These findings suggest that the Hot Shale 

Member has a range of petroleum potential. The binary plot of TOC versus HI (Fig. 16) provides additional 

support for this hypothesis. 

 

Kinetic Parameters 

Kerogen reactivity, which regulates the depth and temperature of oil and gas generation windows as well as 
the onset and rate of hydrocarbon generation, is reflected in source rock kinetics. Consequently, knowing 

source rock kinetics is essential for determining production sweet spots as well as quantitative resource 

modeling [33]. Tables 8 and 9 dis-play the kinetics parameters of the Hot Shale Member. The activation 

energies (47-84 kcal/mol) are gaussian in shape (Figs. 17 and 18). 

 
CONCLUSION  

A geochemical assessment was done of the Hot Shale Member of the Tanezzuft Formation (Early Silurian) 

in wells B1-23 and Q1-23, Ghadames Basin, NW Libya. The following are the work's conclusions: 

(1) The organic richness of the Hot Shale Member ranges from good to excellent. 

(2) The Hot Shale Member holds kerogens of types I, II, and III. 

(3) The Hot Shale Member contains indigenous hydrocarbons. 
(4) Mature organic matter predominate in well Q1-23 samples, while immature organic matter are present 

in the majority of well B1-23 samples. 

(5) There is a range of petroleum potential in the Hot Shale Member. 

(6) The activation energies are gaussian-shaped. 
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Figure 16. Binary plot of TOC vs. HI showing the petroleum potential for the Hot Shale Member 

(fields after [32]). 

 

Table 8. Kinetics parameters of the Hot Shale Member in well Q1-23 

Percent Activation energy (cal/mol) 

1.15 84000 

1.63 49000 

1.42 50000 

0.00 51000 

2.14 52000 

49.15 53000 

8.37 54000 

25.74 55000 

0.00 56000 

0.00 57000 

10.40 58000 

Frequency factor = 1000E+14 s^-2 

 

Table 9. Kinetics parameters of the Hot Shale Member in well B1-23 

Percent Activation energy 
(cal/mol) 

1.03 47000 

0.87 48000 

1.02 49000 

0.00 50000 

10.25 51000 

47.06 52000 

14.27 53000 

14.64 54000 

4.70 55000 

1.96 56000 

4.19 57000 

Frequency factor = 1000E+14 s^-2 
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Figure 17. Activation energies of the Hot Shale Member in well Q1-23. 

 
Figure 18. Activation energies of the Hot Shale Member in well B1-23. 

 

Recommendation 
Large reserves of unconventional hydrocarbons, such as shale gas and shale oil, are found in Libya. The 

Hot Shale Member is considered one of the unconventional reservoirs in Libya. The formation of shale oil 
and shale gas depends on several factors, including high TOC content and high thermal maturity. The 

current study showed that both of the previous factors are available in the Hot Shale Member in wells B1-

23 and Q1-23. Therefore, the authors recommend conducting an analysis of biomarkers to evaluate 

unconventional hydrocarbons in the studied wells. 
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 المستخلص 

ستخدام  العمل الحالي هو تقييم للصخور المصدرية لعضو الصخر الزيتي الساخن في تكوين تنزفوت )السيلوري المبكر( با

، حوض غدامس، شمال غرب ليبيا. البيانات الجيوكيميائية التي تم  Q1-23 و B1-23 البيانات التي تم الحصول عليها من الآبار

التي أجرتها شركة سرت للنفط على عدد من عينات الصخر الزيتي التي تمثل عضو   HAWK الحصول عليها من تحليل أداة

 TOC ء العضوي، يقع عضو الصخر الزيتي الساخن بين الجيد والممتاز بناءً على قيمالصخر الزيتي الساخن. من حيث الثرا

- HI (126 هذا الافتراض. من حيث نوع الكيروجين، تُظهر قيم  PP مقابل TOC يدعم الرسم البياني الثنائي لـ .(1.05-12.39٪)

 ، وHI مقابل Tmax تقدم المخططات الثنائية لـ .III و II و I مجم / جم( وجود أنواع مختلفة من الكيروجين، مثل الأنواع  794

TOC مقابل S2و ، OI مقابل HI المزيد من الأدلة على هذه الفرضية. من حيث الأصالة، تشير نسبة S1/TOC (0.16-0.81) 

الافتراض. ومن حيث  مصداقية لهذا   S1 مقابل TOC إلى هيمنة الهيدروكربونات الأصلية. ويعطي الرسم البياني الثنائي لـ

الحراري، تشير قيم لـRo (0.3-0.78٪)درجة مئوية( و  417-441) Tmax النضج  الثنائية  البيانية  ،  HI مقابل Tmax ، والرسوم 

تحتوي في المقام الأول على مادة عضوية ناضجة، في حين   Q1-23 إلى أن عينات البئر Tmax مقابل PI، وRo مقابل Tmaxو

البترول، يُظهر عضو الصخر الزيتي  B1-23 لبئرتحتوي غالبية عينات ا على مادة عضوية غير ناضجة. ومن حيث إمكانات 

لـ الثنائي  البياني  الرسم  في  موضح  هو  كما  البترول،  إمكانات  من  متنوعة  مجموعة  حيث   .HI مقابل TOC الساخن  ومن 

 .غاوسيكيلو كالوري/مول( لها شكل  84-47المعلمات الحركية، فإن طاقات التنشيط ) 
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