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ABSTRACT 

In geoscience, it is possible to deduce the 

paleoclimate of sediments from their 

lithology, fossil content, chemical 

composition, or geophysical characteristics. 

In this paper, the author reviewed the use of 

the concentration of major and trace elements 

to infer the paleoclimate. For this purpose, a 

variety of markers have been used in the 

previous studies, such as CIA, C.I, 

K2O/Al2O3, Al/Mg, Mg/Ca, Fe/Mn, Rb/Sr, 

Sr/Cu, Ga/Rb, Sr/Ba, ΣREE, and Eu anomaly. 

It should be noted that, for a more accurate 

evaluation of paleoclimate, discrimination 

diagrams (the plots of K2O+Na2O+Al2O3 

versus SiO2, CIA versus C.I, K2O/Al2O3 

versus Ga/Rb, Fe/Mn versus Sr/Ba, Rb/Sr 

versus Sr/Cu, and Mg/Ca-Al/Mg-ΣREE) are 

the recommended technique 
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INTRODUCTION 
The climate of a former geological era is known as the paleoclimate. There are three distinct periods of paleoclimate 

that correspond to different geological ages: Precambrian, Phanerozoic, and Quaternary. Global paleoclimate markers 

are the proxies that are susceptible to changes in the global paleoclimatic condition. The majority of their origins are in 

marine sediments. Conversely, paleoclimate markers obtained from terrestrial sediments are frequently impacted by 

local tectonic shifts and paleogeographic fluctuations. Plate tectonics, which regulates the arrangement of continents, 

the interaction between the atmosphere and ocean, and the properties of Earth's orbit (Milankovitch cycles) are some of 

the factors that affect the climate system on Earth. Based on data gleaned from the examination of geologic materials 

global paleoclimate markers are developed. Generally, there are four types of paleoclimate markers: (1) Lithology [1-

3]. (2) Fossil content [4-6]. (3) Chemical composition [7-9]. (4) Geophysical properties [10]. Elements and isotopes that 

record environmental data are among the geochemical markers [11,12]. Geochemists employ these markers to interpret 

paleoclimate environments. Concentrations of Si, Al, K, Na, Mg, Ca, Fe, Mn, Ga, Cr, Ni, V, Co, Sr, Ba, Cu, Rb, and 

REE can be used to determine paleoclimate [13-17]. In this work, the authors reviewed methods for evaluating 

paleoclimate based on the concentration of major and trace elements. 

 

Paleoclimate Markers  

Chemical Index of Alteration 

Numerous authors [e.g., 18 and 19] have extensively evaluated paleoclimatic conditions using the chemical index of 

alteration (CIA = (Al2O3/(Al2O3+CaO*+Na2O+K2O))100, [20]). There are three methods to calculate the concentration 

of calcium oxide (CaO*) in the silicate fraction: 

(1) CaO* = CaO–CO2(calcite)–0.5 x CO2(dolomite)–10/3 x P2O5(apatite) [21].  

(2) CaO* = CaO−P2O5, if Na2O>CaO−P2O5, or CaO* = Na2O, if Na2O<CaO−P2O5 [22].  

(3) CaO* = CaO–SO3(anhydrite/gypsum) [23].  
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Arid, semi-arid to semi-humid, and humid climates are characterized by CIA values of <70%, 70-80%, and 80-100%, 

correspondingly [20]. [24] pointed out the limitations of the CIA, despite its usefulness in interpreting paleoclimatic 

conditions. They believed that the existence of carbonate-rich sediments, post-depositional potassium addition, and the 

hereditary of clays from the source area could restrict the reliance on the CIA as a paleoclimate parameter. They 

suggested that the CIA is a valuable resource for determining paleoclimate conditions, if used with the proper caution. 

In order to estimate climate changes, [25] demonstrated a positive correlation between land surface temperatures and 

CIA on a global scale. The surface temperature can be ascertained using the following equation: T(°C) = 0.56 × 

CIA−25.7 [26]. The correlation held true with an uncertainty of approximately ±5 °C when CIA and T ranged from ~50 

to 90% and ~3 to 25 °C, correspondingly [26]. A correlation between CIA and mean annual precipitation (MAP) without 

K (CIA-K) was suggested by [27]: MAPCIA-K = 221e0.0197(CIA-K). This correlation was modified by [28] as follows: 

MAPCIA = 169e0.0271(CIA). 

 

Climatic Index 

The climatic index (C.I = (Fe+Mn+Cr+Ni+V+Co)/(Ca+Mg+Sr+Ba+K+Na), [15]) is utilized as a paleoclimate 

reference. C.I also referred to as C-value. The underlying suggestion for C.I is that, there is an increase in Fe, Mn, Cr, 

Ni, V, and Co in humid environments; while in arid environments, saline minerals precipitate as water alkalinity 

increases due to evaporation, resulting in the enrichment of Ca, Mg, K, Na, Sr, and Ba [7 and 15]. Humid, semi-humid, 

semi-arid to semi-humid, semi-arid, and arid climates are represented by C.I values of >0.8, 0.6-0.8, 0.4-0.6, 0.2-0.4, 

and <0.2, respectively [8 and 29]. 

 

K2O/Al2O3 Ratio 

Feldspars and clay minerals can be distinguished using the K2O/Al2O3 ratio. Feldspars have a higher ratio (0.3-0.9) 

compared to clay minerals (0-0.3, [30]). Furthermore, the ratio in illite (0.2-0.3, [31]) is higher than that in kaolinite, 

smectite, and vermiculite (nearly zero, [30]). Accordingly, humid conditions are characterized by low K2O/Al2O3 ratios 

(<0.2), while the ratios are high in arid climates (>0.2, [32]). 

 

Fe/Mn Ratio 

The Fe/Mn ratio can be used to provide paleoclimatic evidence [33 and 34]. Mn concentration is low in humid conditions 

where Fe is rapidly precipitated from colloidal iron hydroxides, whereas Mn content is typically high in arid climates. 

Therefore, humid climates are linked to high Fe/Mn ratios (>1), whereas arid environments are characterized by low 

ratios (<1) [33]. 

 

Al/Mg Ratio 

The Al/Mg ratio can reveal information about the paleoclimate during deposition; low ratios suggest an arid 

environment, while high ratios indicate a humid climate [33]. 

 

Mg/Ca Ratio 

The Mg/Ca ratio is frequently used as a paleoclimate proxy in clastic rocks [33 and 35]. High ratios are generally 

indicative of arid climates, whereas low ratios are characteristically reflective of humid climates [33]. 

 

Rb/Sr Ratio 

The Rb/Sr ratio is a significant index of paleoclimate [36]. During weathering, Sr is depleted through leaching, whereas 

Rb remains relatively stable. Sr is depleted and the Rb/Sr ratio rises (>0.5) as a result of increased precipitation and 

increased weathering in humid climates. Since there is less precipitation, less weathering, and more Sr-rich rocks in arid 

climates, the Rb/Sr ratio would be relatively low (<0.5) [36]. 

 

Sr/Cu Ratio 

Paleoclimate studies have used the Sr/Cu ratio as a reliable indicator [37]. Similar to Rb, Cu does not change during 

weathering. The typical Sr/Cu ratios for humid, semi-arid to semi-humid, and arid climates are 1.3-5, 5-10, and >10, 

correspondingly [37]. 

 

Ga/Rb ratio 

The paleoclimate system is often constrained by the Ga/Rb ratio [32]. In general, Ga is more abundant in kaolinite, 

suggesting humid conditions, whereas Rb is more commonly found in illite, signifying an arid environment [38]. 

Consequently, the Ga/Rb ratio is high in humid conditions (>0.21), while arid climates show low ratios (<0.21) [32]. 
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Sr/Ba Ratio 

Paleoclimate can be assessed based on the Sr/Ba ratio [34 and 39]. Climate has an impact on the Sr/Ba ratio; high ratios 

(>1) represent arid conditions, while low ratios (<1) indicate humid climates [39]. 

 

Rare Earth Elements 

REE are very sensitive to variations in the paleoclimate [40-42]. The most important parameters are ΣREE [42] and Eu 

anomaly [40]. Eu anomaly can be calculated using the following equation: Eufound/Eu*expected = EuN/(SmN × GdN)0.5. The 

REE values used in this equation are shale normalized. For normalization, the Post Archean Australian Shale (PAAS, 

[43]) and the North American Shale Composite (NASC, [44]) are utilized. Generally, humid climates display high ΣREE 

[42] and large negative Eu anomaly [40]. According to [41], weak weathering of REE-bearing minerals would result in 

weak secondary LREE-carrying product development and a drop in the (La/Yb)N ratio. 

 

Discrimination Diagrams 

Discrimination diagrams are the preferred method for more accurate paleoclimate evaluation. There are many 

discrimination diagrams that depend on the paleoclimate markers, such as the binary plots of K2O+Na2O+Al2O3 versus 

SiO2 (Fig. 1), CIA versus C.I (Fig. 2), K2O/Al2O3 versus Ga/Rb (Fig. 3), Fe/Mn versus Sr/Ba (Fig. 4), and Rb/Sr versus 

Sr/Cu (Fig. 5), and the triplot of Mg/Ca-Al/Mg-ΣREE (Fig. 6). 

 

Figure 1. Binary plot of CIA vs. C.I [after 8, 20, and 29]. 

 

Figure 2. Binary plot of CIA vs. C.I [after 8, 20, and 29]. 
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Figure 3. Binary plot of K2O/Al2O3 vs. Ga/Rb [32]. 

 

Figure 4. Binary plot of Fe/Mn vs. Sr/Ba [after 33 and 39]. 

 

Figure 5. Binary plot of Rb/Sr vs. Sr/Cu [after 36 and 37]. 
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Figure 6. Triplot of Mg/Ca-Al/Mg-ΣREE [after 33 and 42]. 

 

CONCLUSION 
Two conclusions can be drawn from this work: (1) Numerous markers, including CIA, C.I, K2O/Al2O3, Al/Mg, Mg/Ca, 

Fe/Mn, Rb/Sr, Sr/Cu, Ga/Rb, Sr/Ba, ΣREE, and Eu anomaly, can be used to determine the paleoclimate of sediments. 

(2) The best approach for a more precise assessment of paleoclimate is to use discrimination diagrams such as the plots 

of K2O+Na2O+Al2O3 versus SiO2, CIA versus C.I, K2O/Al2O3 versus Ga/Rb, Fe/Mn versus Sr/Ba, Rb/Sr versus Sr/Cu, 

and Mg/Ca- Al/Mg-ΣREE. 
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 خلال تركيزات العناصر الرئيسية والعناصر النزرة: مراجعةتقييم المناخ القديم من 

 2مةو*، مصطفى بن حك1الشلطاميأسامة 

 قسم علوم الأرض، كلية العلوم، جامعة بنغازي، ليبيا 1
 المركز الليبي للدراسات والبحوث في العلوم وتكنولوجيا البيئة، فرع المنطقة الوسطى، زليتن، ليبيا 2

 

 

 

 الملخص

الأرض، من الممكن استتتنتاا المناا القد م للرواستت  من خصا خهتتالهتتيا الهتتتر ة  و محتوا ا الأ  وري  و في علم  

تركيبيا الكيميالي  و خهتتالهتتيا الييوفيز الية  في  لو الورقة، استتتعرض المتلد استتتتدام تركيز العناستتر الرليستتية  

تدام ميموعة متنوعة من العصمات في الدراستات الستابقة،  والعناستر النزر  سستتنتاا المناا القد م  ليلا الغرض، تم استت

 Sr/Baو Ga/Rbو Sr/Cuو Rb/Srو Fe/Mnو Mg/Caو Al/Mgو K2O/Al2O3و C.Iو CIA متت تت 

 متططات ) تيدر الإشتتتار   لى  من من  ج  تقييم  ك ر  قة للمناا القد م، فمخ متططات التمييز .Eu وشتتتلو   ΣREEو

K2O+Na2O+Al2O3  مقتابت SiO2و ،CIA  مقتابت C.Iو ،K2O/Al2O3  مقتابت Ga/Rbو ،Fe/Mn  مقتابت 

Sr/Baو ،Rb/Sr  مقاب Sr/Cuو ،Mg/Ca-Al/Mg-ΣREE) ي التقنية الموسى بيا  

  المناا القد م، العناسر الرليسية، العناسر النزر   الكلمات المفتاحية
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