
 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1318 

Review article  

Review New Applications using Interpolation and Polynomial 

Approximation 

Abdalftah Elbori1∗ , Wafaa Abou zenad1, Ali Albarki2  

1Department of Mathematics, Faculty of Science, Azzaytuna University, Tarhuna, Libya 
2Department of Mathematics, Faculty of Education, Azzaytuna University, Tarhuna-Libya 

 

ARTICLE INFO  

Corresponding Email. Abdalftah81@yahoo.com   

 

 

Received: 11-07-2024 

Accepted: 01-10-2024 

Published: 24-11-2024 

 

 

 

Keywords. Lagrange Polynomials, Cubic Spline Interpolation, Divided 

Differences, Parametric Curves.  

 

 

 

Copyright: © 2024 by the authors. Submitted for possible open access 

publication under the terms and conditions of the Creative Commons 

Attribution International License (CC BY 4.0). 

http://creativecommons.org/licenses/by/4.0/ 

ABSTRACT 

 This study analyses the mathematical 

structure of the interpolation to guarantee 

that the resulting function passes through 

all given data points. At the same time, 

polynomial approximation aims to find a 

polynomial function that closely matches 

the data but may not pass through all points 

and is typically determined using the least 

squares. Both methods have their 

advantages and are used in various fields, 

depending on the specific requirements of 

the problem at hand. The paper also 

explores the Lagrange Interpolation Error 

Theorem, providing insights into the 

accuracy and limitations of interpolation 

techniques. Understanding these methods 

and their error 1318ata1318cteristiccs 

helps in selecting the appropriate approach 

for various practical applications. 

Cite this article. Elbori A, Abou zenad W, Albarki A. Review New Applications using Interpolation and Polynomial 

Approximation. Alq J Med App Sci. 2024;7(4):1318-1333. https://doi.org/10.54361/ajmas.247459    

 

INTRODUCTION 
Interpolations are important in many practical areas, including complex dynamics models for both mathematical 

calculations and systems research, boundary value solutions of various types of ordinary and partial differential 

equations, and simulation of various forms of offline temporary process data. Recursive and predictor-corrector forms 

of polynomial interpolation have been used in applications or in models devised to assist with practical problems. 

Examples include the construction of parallel algorithms for boundary value solution of linear ordinary differential 

equations with constant coefficients, one-time data compression, and harmful taint modeling [1,2]. 

Interpolation is a mathematical process of constructing new data points yielding the polynomial which will satisfy a 

given set of conditions. Usually, these conditions are a finite number of values of the polynomial itself, its derivatives 

at points, or function values. Polynomial approximation is concerned with polynomial interpolation of points that are 

not pre-specified. For the latter case, expansion models are often used to find the interpolating polynomial. Such models 

include the more popular least-squares polynomial approximations and the numerical approximations used to generate 

the Chebyshev polynomials. Optimization of Shape Parameters in Kernel Density Estimation using Asymptotic Theory 

for Nearest Neighbor Regression [3]. 

 

Definition and basic concepts 

Given two integers, not both equal to 0, the division operation returns the unique integers q and r such that 𝑎 = 𝑏𝑞 + 𝑟 

and 0 ≤ 𝑟 < |𝑏|. In a finite Galois field, one can design an interpolation with linear complexity that is optimal in terms 

of both computational complexity and space using auxiliary polynomial and rational polynomial representations of the 

remainders in the Euclidean divisions involved. Such representations can also be constructed space-optimally. The 

running times, for any arbitrary selection of the field and two integers, are then linear and singly logarithmic in the 

related field size, respectively. At a cost with single logarithmic complexity in the field size, faster space-optimal 

https://journal.utripoli.edu.ly/index.php/Alqalam/index
mailto:Abdalftah81@yahoo.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.54361/ajmas.247459
https://orcid.org/0000-0001-9796-9325


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1319 

representations can be achieved with the following up. These representations allow one to manipulate the remainders 

by calls to polynomial addition, subtraction, and multiplication. High-speed modulas are instrumental in evaluating 

Reed-Solomon type error-correcting codes or interleaving with size- and position-adjusted dimensions at only a cost 

linear in the Galois field order [4]. 

The concept of a polynomial approximation of continuous maps of measure zero has been known for a long time in 

constructive analysis. For any continuous bounded function defined on a compact interval [a, b], there exists a sequence 

of polynomials with integer coefficients such that, in the uniform norm, the distance from one of the partial sums to the 

given function of measure zero is at most ε. A classical theorem that is based on Bezout's theorem states that, given a 

set of n points (each defined by a coordinate and a frequency) in the (two-dimensional version of the) plane, there is a 

rational function (a ratio of two polynomials) of degree at most d such that a zero of each of its partial derivatives can 

be found at any of the points. This leads to a speeding-up of the computation of the coefficients that represent wavelet 

functions on the fly. "Whichever direction you choose; the notion of interpolation is central in the field of polynomial 

approximation." In particular, division with remainder, a.k.a. Euclidean division, is essential in the process of 

constructing this function. Our primary fields of interest are mathematics and information and computer sciences, but 

we are open to discussing and developing any kind of potential windows of opportunity for applying these methods. 

Our investigations revealed that some of the functions and characteristics accepted as a basis are not actually effectively 

used. We believe that meaningful usage of this kind of mathematical knowledge remains an open question. We are 

interested in finding and researching the potentials and advantages of these activities. This list can also be effectively 

used as an extended appendix to this work and a manual for developers in the mentioned fields who intend to create and 

use polynomial approximations. This work is aimed at developing new applications in various fields using the mentioned 

mathematical methods. Of course, we aim to take advantage. 

 

Interpolation and Lagrange Polynomials 

One of the most useful classes of functions is polynomials 

𝑃𝑛(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 

where 𝑛 is a nonnegative integer and 𝑎0, 𝑎1, … , 𝑎𝑛 are real constants? One reason is that any continuous function can be 

approximated by a polynomial arbitrarily close. By this we mean that given any continuous function, there exists a 

polynomial that is as “close” to the given function as desired.  

Theorem 1:- (Weierstrass Approximation Theorem) Theorem). 

Suppose 𝑓 ∈ 𝐶[𝑎, 𝑏]. For each 𝜖 > 0, there exists a polynomial 𝑃(𝑥) such that  
|𝑓(𝑥) − 𝑃(𝑥)| <  𝜖, ∀𝑥 ∈ [𝑎, 𝑏] 

A typical example for polynomial approximations is the Taylor polynomial 

𝑃𝑛(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) +
(𝑥 − 𝑥0)2

2!
𝑓′′(𝑥0) +

(𝑥 − 𝑥0)3

3!
𝑓′′′(𝑥0) + ⋯ +

(𝑥 − 𝑥0)𝑛

𝑛!
𝑓𝑛(𝑥0) 

For example, using Taylor polynomials at 𝑥0 = 0 to approximate 𝑓(𝑥) = 𝑒𝑥, we obtain 

𝑃0(𝑥0) = 1, 𝑃1(𝑥0) = 1 + 𝑥 

𝑃2(𝑥0) = 1 + 𝑥 +
𝑥2

2!
 

⋮               ⋮           ⋮ 

𝑃𝑛(𝑥0) = 1 + 𝑥 +
𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
= ∑

𝑥𝑘

𝑘!

𝑛

𝑘=0

 

Note that even for higher-degree polynomials, error becomes progressively worse as we move away from the point 

𝑥0 = 0. 

𝑓(3) = 20.0855 

𝑃0(3) = 1, 𝑃1(3) = 4, … . , 𝑃4(3) = 16.375 

Remark: For Taylor polynomials, all information used in the approximation is concentrated at the single number 𝑥0, 

so these polynomials will generally give inaccurate approximations as we move away from 𝑥0. This limits Taylor 

polynomial approximation to the situation in which approximations are needed only at numbers close to 𝑥0. 

A good interpolation polynomial needs to provide a relatively accurate approximation over an entire interval, and 

Taylor polynomials do not generally do this. It is usually more efficient to develop methods that use information 

spread at various points. 

 

 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1320 

 

Lagrange Interpolation Polynomials 

Suppose that a function 𝑓(𝑥) passes through two points (𝑥0, 𝑦0) and (𝑥1, 𝑦1). Define the following linear Lagrange 

polynomials 

𝐿0(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
, 𝐿1(𝑥) =

𝑥 − 𝑥0

𝑥1 − 𝑥0
 

It is easy to verify that 

𝐿0(𝑥0) =  1, 𝐿0(𝑥1)  =  0, 
𝐿1(𝑥0) =  0, 𝐿1(𝑥1)  =  1. 

The linear Lagrange interpolating polynomial through (𝑥0, 𝑦0) and (𝑥1, 𝑦1) is 

𝑃(𝑥) = 𝑦0𝐿0(𝑥) + 𝑦1𝐿1(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
𝑦0 +

𝑥 − 𝑥0

𝑥1 − 𝑥0
𝑦1 

It can be verified that 𝑃(𝑥0) = 𝑦0 and 𝑃(𝑥1) =  𝑦1 

 

Example 2. 

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1). 

Then, the linear Lagrange interpolating polynomial is 

𝑃(𝑥) = 𝑦0𝐿0(𝑥) + 𝑦1𝐿1(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
𝑦0 +

𝑥 − 𝑥0

𝑥1 − 𝑥0
𝑦1 = −

1

3
(𝑥 − 5). 4 +

1

3
(𝑥 − 2). 1 = −𝑥 + 6 

To generalize the concept of linear interpolation, consider the construction of a polynomial of degree at most 𝑛 that 

passes through the following 𝑛 +  1 points: 

Definition: (Lagrange Interpolating Polynomials). The n-th Lagrange interpolating polynomials are defined by 

𝐿𝑛,𝑘(𝑥) =
(𝑥 − 𝑥0) … (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1) … (𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥0) … (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1) … (𝑥𝑘 − 𝑥𝑛)
= ∏

(𝑥 − 𝑥𝑖)

(𝑥𝑘 − 𝑥𝑖)

𝑛

𝑖≠𝑘
𝑖=0

, 𝑘 = 0,1,2, … , 𝑛 

 

Figure 1: The n-th Lagrange interpolating polynomials 

 

We may write 𝐿𝑛,𝑘(𝑥) simply as 𝐿𝑘(𝑥) when there is no confusion as to its degree. 

Theorem 2: If 𝑥0, 𝑥1, … , 𝑥𝑛 are 𝑛 +  1 distinct numbers and 𝑓 is a function whose values are given at these numbers, 

then a unique polynomial 𝑃(𝑥) of degree at most 𝑛 exists with 

𝑓(𝑥𝑘)  =  𝑃(𝑥𝑘), for each 𝑘 = 0,1, … , 𝑛. 

This polynomial is given by 

𝑃(𝑥) = 𝑓(𝑥0)𝐿𝑛,0(𝑥) + ⋯ + 𝑓(𝑥𝑛)𝐿𝑛,𝑛(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿𝑛,𝑘(𝑥)

𝑛

𝑘=0

, 𝑘 = 0,1, … , 𝑛  

and 

𝐿𝑛,𝑘(𝑥) =
(𝑥 − 𝑥0) … (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1) … (𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥0) … (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1) … (𝑥𝑘 − 𝑥𝑛)
= ∏

(𝑥 − 𝑥𝑖)

(𝑥𝑘 − 𝑥𝑖)

𝑛

𝑖≠𝑘
𝑖=0

, 𝑘 = 0,1,2, … , 𝑛 

For the error bound of the Lagrange interpolation, we have the following result 

Theorem 3 (Lagrange Interpolation Error Theorem). 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1321 

Suppose 𝑥0, 𝑥1, … , 𝑥𝑛 are distinct numbers in the interval [𝑎, 𝑏] and 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏]. Then, for each 𝑥 ∈ [𝑎, 𝑏], there 

exists a number 𝜉(𝑥) between min{𝑥0, 𝑥1, … , 𝑥𝑛} and m𝑎𝑥{𝑥0, 𝑥1, … , 𝑥𝑛}, and hence in [𝑎, 𝑏], such that 

𝑓(𝑥) = 𝑃(𝑥) +
𝑓𝑛+1(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛) 

where 𝑃(𝑥) is the interpolating polynomial of 𝑓(𝑥). 

 

Comparison of Lagrange polynomials and Taylor polynomials 

The nth-degree Taylor polynomial around 𝑥0 concentrates all the known information at 𝑥0, and has an error term of 

the form 

𝑓𝑛+1(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛+1 

The nth-degree Lagrange polynomial uses information at distinct numbers 𝑥0, 𝑥1, … , 𝑥𝑛, and, in place of (𝑥 − 𝑥0)𝑛, its 

error formula uses a product of the 𝑛 +  1 terms 

𝑓𝑛+1(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛). 

Example: we found the 2nd-degree Lagrange polynomial 𝑃2(𝑥) for 𝑓(𝑥) =
1

𝑥
, we have on [2,4] using the nodes 

𝑥0 = 2, 𝑥1  =  2.75, 𝑥2  =  4 

Determine the error form of this polynomial, and the maximum error when the polynomial is used to approximate 𝑓(𝑥) 

for 𝑥 ∈ [2 4]. 
Since 𝑓(𝑥) = 𝑥−1, we have  

𝑓′(𝑥) = −𝑥−2, 𝑓′′(𝑥) = 2𝑥−3, 𝑓′′′(𝑥) = −6𝑥−4. 
By Theorem 3, we have on the interval [2,4], 

|𝑓(𝑥) − 𝑃(𝑥)| = |
𝑓3(𝜉)

3!
𝑔(𝑥)| =

6𝜉−4

3!
|𝑔(𝑥)| =

1

𝜉4
|𝑔(𝑥)| ≤

1

16
|𝑔(𝑥)| 

Where  

𝑔(𝑥) = (𝑥 − 2)(𝑥 − 2.75)(𝑥 − 4) = 𝑥3 −
35

7
𝑥2 +

49

2
𝑥 − 22. 

We now need to determine the maximum value of 𝑔(𝑥) on 𝑥 ∈ [2 4].  𝑔′(𝑥) =
1

2
(3𝑥 − 7)(2𝑥 − 7) 

The critical points are 𝑥1 =
7

3
 and 𝑥2 =

7

2
. The global extrema are among the critical points and endpoints 𝑥 = 2 and 

𝑥 = 4. 

𝑔(0) = 0, 𝑔 (
7

3
) =

25

108
, 𝑔 (

7

2
) = −

9

16
, 𝑔(4) = 0 

Hence, the maximum error is 

max
𝑥∈[2 4]

|𝑓(𝑥) − 𝑃(𝑥)| ≤
1

16
|−

9

16
| =

9

256
≈ 0.0351 

we found the error at 𝑥 = 3 is 
|𝑓(3) − 𝑃(3)| = 0.03418 < 0.0351 = max

𝑥∈[2 4]
|𝑓(𝑥) − 𝑃(𝑥)| 

 

Divided Differences 

Recall the n-th Lagrange Interpolation 𝑃(𝑥) of the function 𝑓(𝑥) at 𝑛 +  1 distinct points 𝑥0, 𝑥1, … , 𝑥𝑛. 

𝑃(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿𝑛,𝑘(𝑥)

𝑛

𝑘=0

, 

where 

 𝐿𝑛,𝑘(𝑥) = ∏
(𝑥 − 𝑥𝑖)

(𝑥𝑘 − 𝑥𝑖)

𝑛

𝑖≠𝑘
𝑖=0

, 𝑘 = 0,1,2, … , 𝑛 

If we have one more data point available (𝑥𝑛+1, 𝑓(𝑥𝑛+1)), then how to construct a new 𝑛 +  1-th degree interpolation 

𝑃𝑛+1(𝑥). To have to abandon all Lagrange polynomial 𝐿𝑛,𝑘(𝑥)), and reconstruct new Lagrange polynomials 𝐿𝑛+1,𝑘(𝑥). 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1322 

Is there a more efficient way for adding more data points?  Although the interpolation polynomial 𝑃𝑛(𝑥) is unique, there 

are alternative representations that are useful in certain situations. 

In fact, we can write 𝑃𝑛(𝑥) in the following form 

𝑃𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯ + 𝑎𝑛(𝑥 − 𝑥0) … (𝑥 − 𝑥𝑛−1) 

for appropriate constants 𝑎0, 𝑎1, … , 𝑎𝑛. Note that 𝑃𝑛(𝑥0) = 𝑓(𝑥0) ⇒ 𝑎0 = 𝑓(𝑥0) 

𝑃𝑛(𝑥1) = 𝑓(𝑥1) ⇒ 𝑓(𝑥1) = 𝑓(𝑥0) + 𝑎1(𝑥1 − 𝑥0) ⇒ 𝑎1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
 

By same way we can get  

𝑎2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥2 − 𝑥0
 

We now introduce the divided-difference notation, which will be very useful in determine the values of 𝑎𝑖 

Divided Difference: The zeroth divided difference of the function f at 𝑥𝑖 is 𝑓[𝑥𝑖]  =  𝑓(𝑥𝑖). 

The first divided difference of 𝑓 at 𝑥𝑖 and 𝑥𝑖+1 is 

𝑓[𝑥𝑖 , 𝑥𝑖+1] =
𝑓[𝑥𝑖+1]− 𝑓[𝑥𝑖]

𝑥𝑖+1−𝑥𝑖
. 

The second divided difference of 𝑓 at 𝑥𝑖, 𝑥𝑖+1and 𝑥𝑖+2 is 

𝑓[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2] =
𝑓[𝑥𝑖+1,𝑥𝑖+2]−𝑓[𝑥𝑖,𝑥𝑖+1]

𝑥𝑖+2−𝑥𝑖
. 

In general, the k-th divided difference of f at 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘 is  

𝑓[𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑘] =
𝑓[𝑥𝑖+1,…,𝑥𝑖+𝑘]−𝑓[𝑥𝑖,𝑥𝑖+1,…,𝑥𝑖+𝑘−1]

𝑥𝑖+𝑘−𝑥𝑖
. 

It can be seen that 

𝑎0 = 𝑓(𝑥0) = 𝑓[𝑥0], 𝑎1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 𝑓[𝑥0, 𝑥1] & 𝑎2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥2 − 𝑥0
= 𝑓[𝑥0, 𝑥1, 𝑥2] 

In general, we have 𝑎2 = [𝑥0, 𝑥1, … , 𝑥𝑖+𝑘] for all 𝑘 = 0,1, … , 𝑛. 

 

Interpolation with Newton’s Divided Difference 

The Lagrange interpolation 𝑃𝑛(𝑥) of 𝑓(𝑥) at 𝑥0, 𝑥1, … , 𝑥𝑛 can be written as 

𝑃𝑛(𝑥) = 𝑓[𝑥0] + ∑ 𝑓[𝑥0, 𝑥1, … , 𝑥𝑘](𝑥 − 𝑥0) … (𝑥 − 𝑥𝑘−1)

𝑛

𝑘=1

  

Divided Difference Table 

𝑥 𝑓(𝑥) First divided differences Second divided differences Third divided differences 

𝑥𝟎 𝑓[𝑥0] 
𝑓[𝑥0, 𝑥1]

=
𝑓[𝑥1] − 𝑓[𝑥0]

𝑥1 − 𝑥0
 𝑓[𝑥0, 𝑥1, 𝑥2]

=
𝑓[𝑥1, 𝑥2] − 𝑓[𝑥0, 𝑥1]

𝑥2 − 𝑥0
 

𝑓[𝑥1, 𝑥2, 𝑥3]

=
𝑓[𝑥2, 𝑥3] − 𝑓[𝑥1, 𝑥2]

𝑥3 − 𝑥1
 

 𝑓[𝑥2, 𝑥3, 𝑥4]

=
𝑓[𝑥3, 𝑥4] − 𝑓[𝑥2, 𝑥3]

𝑥4 − 𝑥2
 

𝑓[𝑥3, 𝑥4, 𝑥5]

=
𝑓[𝑥4, 𝑥5] − 𝑓[𝑥3, 𝑥4]

𝑥5 − 𝑥3
 

𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3]

=
𝑓[𝑥1, 𝑥2, 𝑥3] − 𝑓[𝑥0, 𝑥1, 𝑥2]

𝑥3 − 𝑥0
 

𝑓[𝑥1, 𝑥2, 𝑥3, 𝑥4]

=
𝑓[𝑥2, 𝑥3, 𝑥4] − 𝑓[𝑥1, 𝑥2𝑥3]

𝑥4 − 𝑥1
 

 𝑓[𝑥2, 𝑥3, 𝑥4, 𝑥5]

=
𝑓[𝑥3, 𝑥4, 𝑥5] − 𝑓[𝑥2, 𝑥3, 𝑥4]

𝑥5 − 𝑥2
 

𝑥𝟏 𝑓[𝑥1] 
𝑓[𝑥1, 𝑥2]

=
𝑓[𝑥2] − 𝑓[𝑥1]

𝑥2 − 𝑥1
 

𝑥𝟐 𝑓[𝑥2] 
𝑓[𝑥2, 𝑥3]

=
𝑓[𝑥3] − 𝑓[𝑥2]

𝑥3 − 𝑥2
 

𝑥𝟑 𝑓[𝑥3] 
𝑓[𝑥3, 𝑥4]

=
𝑓[𝑥4] − 𝑓[𝑥3]

𝑥4 − 𝑥3
 

𝑥𝟒 𝑓[𝑥4] 
𝑓[𝑥4, 𝑥5]

=
𝑓[𝑥5] − 𝑓[𝑥4]

𝑥5 − 𝑥4
 𝑥𝟓 𝑓[𝑥5] 

Then determine the Newton interpolation polynomial 

Example: Compute a divided difference table for these function values: 

𝑥 3 1 5 6 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1323 

𝑓(𝑥) 1 −3 2 4 

Arrange the table vertically to have 

𝑖 𝑥 𝑓[𝑥] 𝑓[𝑥𝑖−1, 𝑥𝑖] 𝑓[𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖] 𝑓[𝑥𝑖−3, 𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖] 

0 3 1 
2 

−3

8
 

3

20
 

7

4
 

1 1 −3 
5

4
 

2 5 2 

2 
3 6 4 

The Newton interpolation polynomial is 

𝑃(𝑥) = 𝑓[𝑥0] +  𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0)  +  𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1) + 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3](𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 – 𝑥2) 

= 1 + 2(𝑥 − 3) −
3

8
(𝑥 − 3)(𝑥 − 1) +

7

4
(𝑥 − 3)(𝑥 − 1)(𝑥 − 5) 

=
1

40
(7𝑥3 − 78𝑥2 + 301𝑥 − 250) 

Cubic Spline Interpolation 

We here introduced the approximation of arbitrary functions on closed intervals using a single polynomial. However, 

high-degree polynomials can oscillate erratically, that is, a minor fluctuation over a small portion of the interval can 

induce large fluctuations over the entire range. The following is a 20th degree Lagrange interpolation approximating the 

back of a duck. Clearly this does not reflect the profile of the back. 

 

Figure 2: Cubic Spline Interpolation 

 

We introduce interpolation using piecewise polynomials. This will effectively prevent oscillation. The simplest 

piecewise-polynomial approximation is piecewise-linear interpolation. Consider a set of data points: 

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 

𝑓(𝑥0) 𝑓(𝑥1) 𝑓(𝑥2) … 𝑓(𝑥𝑛) 

The following is a piecewise linear polynomial interpolation of a smooth curve 

it is continuously differentiable over the entire domain (to ensure the smoothness). It requires no specific derivative 

information of the original function, except perhaps at the two endpoints of the interval (minimum information from 

original function). The most common piecewise-polynomial approximation is called cubic spline interpolation. The 

interpolation uses piecewise cubic polynomials, and globally second-order differentiable (𝑆 ∈ 𝐶2([𝑥0, 𝑥𝑛])). 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1324 

 

Figure 3: Cubic spline interpolation piecewise-polynomial approximation 

 

Cubic Spline Interpolation (Natural Spline) 

Consider a set of data points 

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 

𝑓(𝑥0) 𝑓(𝑥1) 𝑓(𝑥2) … 𝑓(𝑥𝑛) 

We construct a cubic spline interpolant 𝑆(𝑥) for 𝑓 satisfies.  On each subinterval [𝑥𝑗, 𝑥𝑗+1], 𝑆(𝑥)  is a cubic polynomial, 

denoted by 𝑆𝑗(𝑥)  for 𝑗 = 0,1, … , 𝑛 − 1. 

𝑆𝑗(𝑥𝑗) = 𝑓(𝑥𝑗) and 𝑆𝑗(𝑥𝑗+1) = 𝑓(𝑥𝑗+1) for 𝑗 = 0,1, … , 𝑛 − 1. 

𝑆𝑗+1
′ (𝑥𝑗+1) = 𝑆𝑗

′(𝑥𝑗+1) for 𝑗 = 0,1, … , 𝑛 − 2 

𝑆𝑗+1
′′ (𝑥𝑗+1) = 𝑆𝑗

′′(𝑥𝑗+1) for 𝑗 = 0,1, … , 𝑛 − 2 

The natural boundary conditions 

𝑆(𝑥0) = 𝑆(𝑥𝑛) = 0 

Example: Construct a natural spline that passes through the points (1,2), (2,3), and (3,5). 

This spline consists of two cubics. The two subintervals are [1,2] and [2,3]. We write the piecewise cubic polynomial 

as follows 

𝑆(𝑥) = {
𝑆0(𝑥) = 𝑎0 + 𝑏0(𝑥 − 1) + 𝑐0(𝑥 − 1)2 + 𝑑0(𝑥 − 1)3  0n [1,2]

𝑆1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 2) + 𝑐1(𝑥 − 2)2 + 𝑑1(𝑥 − 2)3   0n [2,3]
 

There are eight constants to be determined, which requires 8 conditions. Four conditions come from nodal values 

𝑆0(1) = 2 ⇒ 𝑎0 =  2, 

𝑆0(2) = 3 ⇒ 𝑏0 + 𝑐0 + 𝑑0 = 1, 

𝑆1(2) = 3 ⇒ 𝑎1  =  3, 

𝑆1(3) = 5 ⇒ 𝑏1 + 𝑐1 + 𝑑1 =  2, 

Two conditions come from derivatives at interior nodes 𝑥1 = 2. 

𝑆0
′ (2) = 𝑆1

′(2) ⇒ 𝑏0 + 2𝑐0 + 3𝑑0 = 𝑏1 

𝑆0
′′(2) = 𝑆1

′′(2) ⇒ 2𝑐0 + 6𝑑0 = 2𝑐1 

The last two conditions are from the natural boundary conditions 

𝑆0
′′(1) = 0 ⇒ 2𝑐0 = 0 

𝑆1
′′(3) = 0 ⇒ 2𝑐1 + 6𝑑1 = 0 

Solve this system of the eight equations gives the spline 

𝑆(𝑥) = {
2 +

3

4
(𝑥 − 1) +

1

4
(𝑥 − 1)3  0n [1,2]

3 +
3

2
(𝑥 − 2) +

3

4
(𝑥 − 2)2 −

1

4
(𝑥 − 2)3   0n [2,3]

 

Construction of a natural cubic spline: Assume the following 𝑛 + 1 distinct points 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1325 

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 

𝑓(𝑥0) 𝑓(𝑥1) 𝑓(𝑥2) … 𝑓(𝑥𝑛) 

subdivide the interval [𝑥0, 𝑥𝑛] into 𝑛 subintervals: 𝐼𝑗 = [𝑥𝑗, 𝑥𝑗+1], 𝑗 = 0,1, … , 𝑛 − 1. The cubic spline 𝑆(𝑥) restricted on 

the interval 𝐼𝑗 is a cubic polynomial 𝑆𝑗(𝑥) for each 0 ≤ 𝑗 ≤ 𝑛 − 1: 

𝑆(𝑥)|𝐼𝑗
= 𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗(𝑥 − 𝑥𝑗)

2
+ 𝑑𝑗(𝑥 − 𝑥𝑗)

3
 

There are 4n constants 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , and 𝑑𝑗 to be determined 

On the interval [𝑥𝑗, 𝑥𝑗+1], denote the length ℎ𝑗 = 𝑥𝑗+1 – 𝑥𝑗 . We note that 

𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗(𝑥 − 𝑥𝑗)
2

+ 𝑑𝑗(𝑥 − 𝑥𝑗)
3

 

It is easy to see that 

𝑎𝑗 = 𝑓(𝑥𝑗), 𝑗 = 0,1, … , 𝑛 − 1.                       (3.1) 

If we also let 𝑎𝑛 = 𝑓(𝑥𝑛), then by some calculations we can represent 𝑏𝑗 and 𝑑𝑗 in terms of 𝑐𝑗 for 0 0 ≤ 𝑗 ≤ 𝑛 − 1. 

𝑏𝑗 =
1

ℎ𝑗
(𝑎𝑗+1 − 𝑎𝑗) −

ℎ𝑗

3
(2𝑐𝑗 + 𝑐𝑗+1)                (3.2) 

𝑐𝑗 =
1

3ℎ𝑗
(𝑐𝑗+1 − 𝑐𝑗)                                       (3.3) 

Here, we also use the definition 

𝑐𝑛 = 𝑆𝑛
′′(𝑥𝑛)/2 

We obtain a linear system for 𝑐𝑗, 0 0 ≤ 𝑗 ≤ 𝑛 − 1 

ℎ𝑗−1𝑐𝑗−1 + 2(ℎ𝑗−1 + ℎ𝑗)𝑐𝑗 + ℎ𝑗𝑐𝑗+1 =
3

ℎ𝑗
(𝑎𝑗+1 − 𝑎𝑗) −

3

ℎ𝑗−1
(𝑎𝑗 − 𝑎𝑗−1) 

Write it as a linear system 𝐴𝑥 = 𝑏 where 

 
The matrix 𝐴 is strictly diagonally dominant, that is, 

|𝑎𝑖𝑖| > ∑|𝑎𝑖𝑗|

𝑛

𝑗=1

, ∀𝑖 = 1,2, … , 𝑛. 

The matrix A is nonsingular and the linear system 𝐴𝑥 = 𝑏 has a unique solution. To solve the linear system 𝐴𝑥 = 𝑏 

with Matlab, we can use the command “backslash” x = A\ b. Let us construct Matlab File For Natural Spline coefficient 

as the following: 

 function [a1, b1, c1, d1] = natural_spline_coef(dataX, dataY) % Number of intervals n = length(dataX) - 1; h = 
zeros(1, n); % Calculate intervals h(j) for j = 1:n h(j) = dataX(j + 1) - dataX(j); end % Initialize coefficient matrix A and 
vector bb A = zeros(n + 1, n + 1); A(1, 1) = 1; % Natural spline condition at the start A(n + 1, n + 1) = 1; % Natural 
spline condition at the end for j = 2:n A(j, j - 1) = h(j - 1); A(j, j + 1) = h(j); A(j, j) = 2 * (h(j - 1) + h(j)); end bb = zeros(n + 
1, 1); for j = 2:n bb(j) = 3 / h(j) * (dataY(j + 1) - dataY(j)) - 3 / h(j - 1) * (dataY(j) - dataY(j - 1)); end % Solve for c1 
coefficients c1 = A \ bb; % Initialize a1, b1, and d1 a1 = dataY(:); % Ensure a1 is a column vector b1 = zeros(n, 1); d1 = 
zeros(n, 1); % Calculate b1 and d1 coefficients for j = 1:n b1(j) = 1 / h(j) * (a1(j + 1) - a1(j)) - h(j) / 3 * (2 * c1(j) + c1(j + 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1326 

1)); d1(j) = (c1(j + 1) - c1(j)) / (3 * h(j)); end % Adjust sizes of a1 and c1 for output a1 = a1(1:end-1); % Remove the last 
element for segment consistency c1 = c1(1:end-1); % Remove the last element for segment consistency end 
 
function [a1,b1,c1,d1] = natural_spline_coef(dataX,dataY) 

n = length(dataX) – 1;h = zeros(1,n);for j = 1:n 

h(j) = dataX(j+1) – dataX(j); 

end 

A = zeros(n+1,n+1);  A(1,1) = 1; A(n+1,n+1) = 1; 

for j = 2:n 

A(j,j-1) = h(j-1); A(j,j+1) = h(j); 

A(j,j) = 2*(h(j-1)+h(j)); 

end 

bb = zeros(n+1,1); 

for j = 2:n 

bb(j) = 3/h(j)*(dataY(j+1)-dataY(j)) – 3/h(j-1)*(dataY(j)-dataY(j-1)); 

end 

c1= A\bb; 

a1= reshape(dataY(1:n+1),n+1,1); 

b1= zeros(n,1); 

d1= zeros(n,1); 

for j = 1:n 

b1(j) = 1/h(j)*(a1(j+1)-a1(j)) – h(j)/3*(2*c1(j)+c1(j+1)); 

d1(j) = (c1(j+1) – c1(j))/(3*h(j)); 

end 

a1(n+1) = []; 

c1(n+1) = []; 

Matlab File for Natural Spline Interpolation  

function y1 = natural_spline(dataX,dataY,x);  [a1,b1,c1,d1] = natural_spline_coef(dataX,dataY); 

y1 = zeros(size(x)); 

for n = 1:length(x) 

for j = 1:length(dataX)-1 

if dataX(j) <= x(n) && dataX(j+1) >= x(n) 

k = j; 

break 

end 

end 

xk = dataX(k); 

y1(n) = a1(k) + b1(k)*(x(n)-xk) + c1(k)*(x(n)-xk)^2 + d1(k)*(x(n)-xk)^3; 

end 

Example: By using Taylor polynomial to approximate the exponential function 𝑓(𝑥) = 𝑒𝑥. Use the following data 

points 

𝑥 0 1 2 3 

𝑓(𝑥) 1 𝑒 𝑒2 𝑒3 

To form a natural cubic spline 𝑆(𝑥) that approximates 𝑓(𝑥) = 𝑒𝑥 By using Matlab   

dataX = [0,1,2,3]; dataY = [exp(0),exp(1),exp(2),exp(3)]; 

[a,b,c,d] = natural_spline_coef(dataX,dataY); 

disp(' a1 b1 c1 d1') 

disp('-----------------------') 

disp([a,b,c,d]) 

x = 0:0.01:3; 

y = natural_spline(dataX,dataY,x); 

figure(1) 

plot(dataX,dataY,'r*','linewidth',3) 

hold on 

plot(x,exp(x),'b-','linewidth',3) 

plot(x,y,'k-.','linewidth',3) 

lgd = legend('data points','y = e^x','y = S(x)'); 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1327 

hold off 

grid on 

lgd.FontSize = 14; 

lgd.Location = 'NorthWest'; 

𝑆(𝑥) = {

1.000 + 1.4660𝑥 + 0.2523𝑥3                                                                  0n [0,1]

2.7183 + 2.2229(𝑥 − 1) + 0.7569(𝑥 − 1)2 + 1.6911(𝑥 − 1)3   0n [1,2]

7.3891 + 8.8098(𝑥 − 2) + 5.8301(𝑥 − 2)2 − 1.9434(𝑥 − 2)3    0n [2,3] 

 

 

Figure 4. Natural cubic spline to approximate the exponential function 𝒇(𝒙) = 𝒆𝒙  

 

Clamped Splines 

The clamped spline is another type of cubic splines that use different boundary conditions. Comparing with the free 

boundary condition in the natural spline, 

𝑆′′(𝑎) = 0, 𝑆′′(𝑏)  = 0, 
the clamped spline specifies the slope at the endpoints, i.e., 

𝑆′(𝑎) = 𝑓′(𝑎), 𝑆′(𝑏)  = 𝑓′(𝑏), 
So, the clamped spline requires additional information 

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 

𝑓(𝑥0) 𝑓(𝑥1) 𝑓(𝑥2) … 𝑓(𝑥𝑛) 

𝑓′(𝑥0) 𝑓′(𝑥1) 𝑓′(𝑥2) … 𝑓′(𝑥𝑛) 

The rest of the conditions are exactly the same as the natural splines. 

Example: We revisit previous Example, and this time we construct a clamped spline that passes through the points 

(1,2), (2, 3), and (3, 5) that has 𝑆′(1) = 2 and 𝑆′(3) = 1. There are two pieces in the spline 𝑆(𝑥): 

𝑆0(𝑥) = 𝑎0 + 𝑏0(𝑥 − 1) + 𝑐0(𝑥 − 1)2 + 𝑑0(𝑥 − 1)3  0n [1,2]

𝑆1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 2) + 𝑐1(𝑥 − 2)2 + 𝑑1(𝑥 − 2)3   0n [2,3]
 

Most conditions (6 out of 8) are the same as the natural spline 

𝑓(1) = 2 ⇒ 𝑎0  = 2, 𝑆0(2) = 3 ⇒  𝑏0 + 𝑐0 + 𝑑0 = 1. 

𝑓(2) = 3 ⇒ 𝑎1  = 3, 𝑆1(3) = 5 ⇒  𝑏1 + 𝑐1 + 𝑑1 = 2. 

𝑆0
′ (2) = 𝑆1

′(2) ⇒ 𝑏0 + 2𝑐0 + 3𝑑0 = 𝑏1 

𝑆0
′′(2) = 𝑆1

′′(2) ⇒ 2𝑐0 + 6𝑑0 = 2𝑐1 

The clamped boundary conditions yield 

𝑆0
′ (1) = 2 ⇒ 𝑏0  = 2, 

𝑆1
′(3) = 1 ⇒ 𝑏1 + 2𝑐1 + 3𝑑1 = 1, 

Solve the system for eight unknowns, we have 

𝑆(𝑥) = {
2 + 2(𝑥 − 1) −

5

2
(𝑥 − 1)2 +

3

2
(𝑥 − 1)3  0n [1,2]

3 +
3

2
(𝑥 − 2) + 2(𝑥 − 2)2 −

3

2
(𝑥 − 2)3   0n [2,3]

 

Construction of a clamped cubic spline 

Define the cubic polynomial on each interval to be 

𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗(𝑥 − 𝑥𝑗)
2

+ 𝑑𝑗(𝑥 − 𝑥𝑗)
3

,    𝑗 = 0,1, … , 𝑛 − 1 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1328 

The coefficients 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 , and 𝑑𝑗 g are define as (3.1) and (3.2). For ,    𝑗 = 1,2, … , 𝑛 − 1, we have the following 

equations for 𝑐𝑗  

ℎ𝑗−1𝑐𝑗−1 + 2(ℎ𝑗−1 + ℎ𝑗)𝑐𝑗 + ℎ𝑗𝑐𝑗+1 =
3

ℎ𝑗
(𝑎𝑗+1 − 𝑎𝑗) −

3

ℎ𝑗−1
(𝑎𝑗 − 𝑎𝑗−1) 

In addition, we have the clamped boundary conditions: 

2ℎ0𝑐0 + ℎ0𝑐1 =
3

ℎ0

(𝑎1 − 𝑎0) − 3𝑓′(𝑎) 

ℎ𝑛−1𝑐𝑛−1 + 2ℎ𝑛−1𝑐𝑛 = 3𝑓′(𝑏) −
3

ℎ𝑛−1

(𝑎𝑛 − 𝑎𝑛−1) 

The clamped spline defined on 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏 is unique. {𝑐𝑗} satisfies the linear system 𝐴𝑥 = 𝑏 where 

 
Matlab File For Clamped Spline Coefficient  

function [a1,b1,c1,d1] = clamped_spline_coef(dataX,dataY,dFa,dFb) 

n = length(dataX) – 1; 

h = zeros(1,n); 

for j = 1:n 

h(j) = dataX(j+1) – dataX(j); 

end 

A = zeros(n+1,n+1); 

A(1,1) = 2*h(1); A(1,2) = h(1);  

A(n+1,n) = h(n); A(n+1,n+1) = 2*h(n);  

for j = 2:n 

A(j,j-1) = h(j-1); 

A(j,j+1) = h(j); 

A(j,j) = 2*(h(j-1)+h(j)); 

end 

bb = zeros(n+1,1); 

bb(1) = 3/h(j)*(dataY(2)-dataY(1)) – 3*dFa;  

bb(n+1) = 3*dFb – 3/h(n)*(dataY(n+1)-dataY(n));  

for j = 2:n 

bb(j) = 3/h(j)*(dataY(j+1)-dataY(j)) – 3/h(j-1)*(dataY(j)-dataY(j-1)); 

end 

c1 = A\bb; 

a1 = reshape(dataY(1:n+1),n+1,1); 

b1 = zeros(n,1); 

d1 = zeros(n,1); 

for j = 1:n 

b1(j) = 1/h(j)*(a1(j+1)-a1(j)) – h(j)/3*(2*c1(j)+c1(j+1)); 

d1(j) = (c1(j+1) – c1(j))/(3*h(j)); 

end 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1329 

a1(n+1) = []; 

c1(n+1) = []; 

Matlab File For Clamped Spline Interpolations  

function y = clamped_spline(dataX,dataY,dFa,dFb,x) 

[a1,b1,c1,d1] = clamped_spline_coef(dataX,dataY,dFa,dFb); 

y1 = zeros(size(x)); 

for n = 1:length(x) 

for j = 1:length(dataX)-1 

if dataX(j) <= x(n) && dataX(j+1) >= x(n) 

k = j; 

break 

end 

end 

xk = dataX(k); 

y1(n) = a1(k) + b1(k)*(x(n)-xk) + c1(k)*(x(n)-xk)^2 + d1(k)*(x(n)-xk)^3; 

end 

Example:  We revisit the spline interpolation of 𝑓(𝑥) = 𝑒𝑥. Use the following data points 

𝑥 0 1 2 3 

𝑓(𝑥) 1 𝑒 𝑒2 𝑒3 

This time we use the clamped spline with the additional information 𝑓′(0) = 1, and 𝑓′(3) = 𝑒3. Then, compare the 

accuracy with the natural spline interpolation. We solve the problem using Matlab programing. 

 

Figure 5:  Clamped cubic spline to approximate the exponential function 𝒇(𝒙) = 𝒆𝒙  

 

The natural spline is 

𝑆(𝑥) = {

1.000 + 1.4660𝑥 + 0.2523𝑥3                                                                0n [0,1]

2.7183 + 2.2229(𝑥 − 1) + 0.7569(𝑥 − 1)2 + 1.6911(𝑥 − 1)3   0n [1,2]

7.3891 + 8.8098(𝑥 − 2) + 5.8301(𝑥 − 2)2 − 1.9434(𝑥 − 2)3    0n [2,3] 

 

The clamped spline is 

𝑆(𝑥) = {

1.000 + 1.000𝑥 + 0.4447𝑥2 + 0.2736𝑥3                                          0n [0,1]

2.7183 + 2.7102(𝑥 − 1) + 1.2655(𝑥 − 1)2 + 0.6951(𝑥 − 1)3   0n [1,2]

7.3891 + 7.3265(𝑥 − 2) + 3.3509(𝑥 − 2)2 + 2.0191(𝑥 − 2)3    0n [2,3] 

 

From the plot, we can see that the clamped spline is more accurate than the natural spline. This is not surprise since 

the boundary conditions for the clamped spline are exact. 

Theorem (Error bound for Clamped Cubic Splines):  Let 𝑓 ∈ 𝐶4[𝑎, 𝑏] with 

max
𝑎≤𝑥≤𝑏

|𝑓4(𝑥)| = 𝑀 

If 𝑆(𝑥) is the unique clamped cubic spline interpolation to 𝑓 with respect to the nodes 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏, 

then for all 𝑥 ∈ [𝑎, 𝑏], 

|𝑓(𝑥) − 𝑆(𝑥)| ≤
5𝑀

384
max

0≤𝑗≤𝑛−1
(𝑥𝑗+1 − 𝑥𝑗)

4
 

Remark: A fourth-order error bound also holds in the case of natural spline interpolation, but it is more difficult to 

express. There are other cubic spline interpolations that do not require the derivative of 𝑓. For example, the popular 

“not-a-knot spline” requires that the third-order derivative 𝑆′′′(𝑥) is continuous at 𝑥1 and 𝑥𝑛−1 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1330 

Example: In this example, we approximate the top profile of the duck using cubic spline interpolation 

 

Figure 6:  Interpolation cubic spline to approximate the top profile of duck  

 

In general, the more points we use, the better approximation we can expect. We chose 21 data points as depicted above 

and shown below in the table. Note that more points are placed where the curve is changing more rapidly 

 

𝒙 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3 

𝒇(𝒙) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.6 0.4 0.25 

 

Since we don’t have derivative information, we use natural spline interpolation. We write a MATLAB driver file for 

this example. Plotting the natural spline interpolation, we observe that the spline curve accurately recovers the top 

profile of the duck. 

 

Figure 7.  Natural and clamped cubic spline to approximate the top profile of duck  

 

To use a clamped spline, we would need derivative approximations for the endpoints. Even if these approximations 

were available, we could expect little improvement because of the close agreement of the natural cubic spline to the 

curve of the top profile. For comparison, we also use Lagrange Interpolation  

dataX = [0.9 1.3,1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 ... 

9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3]; 

dataY = [1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 ... 

1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25]; 

x = 0.9:0.01:13.3;  

y = natural_spline(dataX,dataY,x); 

yy = LagrangeInterpolation(dataX,dataY,x); 

figure(1) 

clf; plot(dataX,dataY,'b*','linewidth',2) 

hold on 

plot(x,y,'r-','linewidth',2) 

plot(x,yy,'k-','linewidth',2) 

axis([0,14,-2,7]) 

hold off 

grid on 

lgd = legend('Data Point','Natural Spline','Lagrange');  lgd.FontSize = 16;  lgd.Location = 'NorthWest';  

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1331 

Plotting the Lagrange interpolation, we observe that the 20th-degree polynomial oscillates wildly. It produces a very 

strange illustration of the back of a duck 

 

Figure 8. Natural and clamped cubic spline to approximate the top profile of duck  

 

This example shows the superiority of the cubic spline interpolation, and we need the Lagrange Interpolation code 

function [P,R,S] = LagrangeInterpolation(X,Y,XX) 

if size(X,1) > 1;  X = X'; end 

if size(Y,1) > 1;  Y = Y'; end 

if size(X,1) > 1 || size(Y,1) > 1 || size(X,2) ~= size(Y,2) 

  error('both inputs must be equal-length vectors') 

end 

N = length(X); pvals = zeros(N,N); 

for I = 1:N 

  pp = poly(X( (1:N) ~= i)); 

  pvals(I,😊 = pp ./ polyval(pp, X(i)); 

end 

P = Y*pvals;  if nargin==3 

  YY = polyval(P,XX); 

  P = YY; 

end 

if nargout > 1 

  R = roots( ((N-1):-1:1) .* P(1☹N-1)) ); 

  if nargout > 2 

    S = polyval(P,R); 

  end 

end 

Constructing a cubic spline to approximate the lower profile of the duck would be more difficult since the curve for this 

portion cannot be expressed as a function of x, and at certain points the curve does not appear to be smooth. These 

problems can be resolved by using separate splines to represent various portions of the curve, but a more effective 

approach to approximating curves of this type is considered in the next section. 

 

Parametric Curves 

The techniques we developed so far in this chapter cannot be used to generate curves of the form shown below because 

this curve cannot be expressed as a function 𝑦 = 𝑓(𝑥). We will see how to represent general curves (even some hand-

drawn curves) using parametric forms. This technique can be extended to represent general curves/surfaces in computer 

graphics. Given a set of data points 

𝑥0 𝑥1 𝑥2 … 𝑥𝑛 

𝑦0 𝑦1 𝑦2 … 𝑦𝑛 

we can use a parameter 𝑡, and construct polynomial or piecewise polynomial approximation for 

𝑥 = 𝑥(𝑡), and 𝑦 = 𝑦(𝑡), 

To do this, we specify an interval [𝑡0, 𝑡𝑛], with 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛, and construct two approximation functions with 

𝑥𝑖 = 𝑥(𝑡𝑖), and 𝑦𝑖 = 𝑦(𝑡𝑖),  𝑖 = 0,1, … , 𝑛. 

Example: Construct a pair of Lagrange polynomials to approximate the curve show below 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1332 

 

Figure 9. The curve parametric represents some points   

 

There are five points, so we choose the points {𝑡𝑖}𝑖=0
4  equally spaced in [0,1]: 

𝑖 0 1 2 3 4 

𝑡𝑖 0 0.25 0.5 0.75 1 

𝑥𝑖 1 0 1 0 −1 

𝑦𝑖 −1 0 0.5 1 0 

Matlab code is 

1332ata = [0,0.25,0.5,0.75,1]; 

dataX = [-1,0,1,0,1]; 

dataY = [0,1,0.5,0,-1]; 

qt = 0:0.001:1; 

qx = LagrangeInterpolation(1332ata,dataX,qt); 

qy = LagrangeInterpolation(1332ata,dataY,qt); 

figure(1); clf 

plot(dataX,dataY,'r*','linewidth',2) 

hold 

plot(qx,qy,'b-.','linewidth',2) 

grid on 

lgd = legend('Data Point','Lagrange'); 

lgd.FontSize = 16; 

lgd.Location = 'NorthEast'; 

The Interpolation polynomials are 

𝑥(𝑡) = 64𝑡4 −
352

3
𝑡3 + 60𝑡2 −

14

3
𝑡 − 1, 

𝑦(𝑡) = −
64

3
𝑡4 + 48𝑡3 −

116

3
𝑡2 + 11𝑡. 

Plotting the parametric system produced the graph below: 

 

Figure 10. Plotting the parametric using Lagrange interpolation.  

 

For this example, we can also use the natural cubic Spline interpolation for the parametric system 

1332ata = [0,0.25,0.5,0.75,1]; 

dataX = [-1,0,1,0,1]; 

dataY = [0,1,0.5,0,-1]; 

qt = 0:0.001:1; 

qx = LagrangeInterpolation(1332ata,dataX,qt); 

https://journal.utripoli.edu.ly/index.php/Alqalam/index


 
https://journal.utripoli.edu.ly/index.php/Alqalam/index  eISSN 2707-7179 

 

 

Elbori et al. Alq J Med App Sci. 2024;7(4):1318-1333    1333 

qy = LagrangeInterpolation(1333ata,dataY,qt); 

qxS = natural_spline(1333ata,dataX,qt); 

qyS = natural_spline(1333ata,dataY,qt); 

figure(1); clf 

plot(dataX,dataY,'r*','linewidth',2) 

hold 

plot(qx,qy,'b-.','linewidth',2) 

plot(qxS,qyS,'k-.','linewidth',2) 

grid on 

lgd = legend('Data Point','Lagrange','Natural Spline'); 

lgd.FontSize = 16; 

lgd.Location = 'NorthEast'; 

 

Figure 10. Plotting the data points using both Lagrange interpolation and Natural spline.  

 

CONCLUSION  
In this paper, there are many concepts are used to explain Interpolation and Lagrange Polynomials and its approximation 

theorem, also it is discussed the langrage interpolation Error and Cubic Spline Interpolation and its error, also we added 

and modified some algorithms related to them by using Matlab, final we discuss also Error bound for Clamped Cubic 

Splines and parametric cubic  

 

REFERENCES  
1. Harris L. Lagrange polynomials, reproducing kernels and cubature in two dimensions. Journal of approximation theory. 

2015;195:43-56. 

2. McKinley S. Levine, Cubic spline interpolation. College of the Redwoods, 1998;45(1):1049-1060. 

3. Trosset M. Optimal shapes for kernel density estimation. Communications in statistics-theory and methods, 

1993;22(2):375-391. 

4. Milne J. Fields and Galois theory (v4. 60). order, 2018;3:138. 

 
 

 الاستيفاء والتقريب متعدد الحدودمراجعة التطبيقات الجديدة باستخدام  

 3، علي البركي2وفاء ابوزنيد ،1عبدالفتاح البركي 

 ، ترهونة، ليبيا جامعة الزيتونة ،كلية العلوم ،قسم الرياضيات 1
 ، جامعة الزيتونة، ترهونة، ليبيا التربيةقسم الرياضيات، كلية 2

 

 المستخلص

لضةةنام مر ر الدالة الةات ة ربر جنين نطاا البيانات النعةا و   ا الوقن نهسةةه، ي د   تحلل هذه الدراسةةة البةية الرياضةةية للتد ل  

  التطريب متعدد الحد د إلى إي اد دالة متعدد  الحد د تتةابق بشكل  ثيق من البيانات،  لكة ا قد لا تنر ربر جنين الةطاا  يتم تحديدها 

ن بنزاياهنا  يتم اسةةتادام نا  ا م الات ماتلهة، ارتناداً رلى النتةلبات  راد ً باسةةتادام النربعات الرةة رتو تتنتن كلتا الةريطتي

النحدد  للنشةةةكلة النةر  ةو كنا يسةةةتكشةةةظ البحط نارية  ةلا التد ل لاارانف، منا يو ر رةت  وو دقة   د د تطةيات التد لو  

 .عنليةيسارد   م هذه الةرق   رائص  ةلاها  ا ا تيار الة ف النةاسب لناتلظ التةبيطات ال

  د د لاجرانف، استيهاء النةحةيات النكعبة، الهر ق النطسنة، النةحةيات البارامتريةو  الكلمات الدالة.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

