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Aims. In this article, we propose a goodness of
fit test for the exponential distribution based on
some characterization of the exponential
distribution. Methods. The test is a weighted

) . . . integral of the squared distance between the
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derived. The mean and variance of the test
statistic are derived under the exponentiality
assumption. Also, based on Monte Carlo
simulations, the power of the test is evaluated
at significance level a = 0.05 for several
sample sizes n=5,10,20, and 50. Results. The
proposed test T; ¢ is a good competitor of other
known exponentiality test statistics.
Conclusion. it is recommended to use a
proposed test when testing a goodness-of-fit for
exponential distribution. Specially, against
distributions  with  kurtosis lower than
exponential distribution.
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INTRODUCTION

The exponential distribution has attracted the attention of statisticians and practitioners from different fields because of its nice
mathematical features. Besides the exponential distribution widely used lifetime distribution, it has been exploited to model data from
different fields such as physical, medical, biological, and ecology. Testing exponentiality of a sample attracted several researchers. In
fact, there exist enormous articles in the literature handling exponentiality tests and their properties. Goodness-of-fit tests until 1986
were synthesized by [1].

The exponentiality tests were classified into four cases: The empirical distribution related tests, correlation based tests, characteristic
functions based tests, and chi — square related tests [1].

Prominent tests based on measuring the discrepancy between the empirical distribution function (EDF) and the cumulative distribution
function (CDF) are s Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and Anderson-Darling (AD) tests. The KS test measures
the maximum distance between the EDF and the CDF whereas the CM test measure the mean square of this distance and AD test
measures a weighted mean square of this deviance. Actually. The AD test is an improvement of CM test. Their test for exponentilitiy
based on the empirical Laplace transform [2].

Also, developed a test procedure for the exponential distribution [3], used the same principles as were employed in defining and
extending the W- statistic for normality [4,5].

Based on the stabilized probability plot suggest a goodness-of-fit statistic [6], critical values are given of test and investigate its power
[7]. Moreover, based on maximum correlations is developed a location and scale free goodness of fit statistic [8]. Finally, a test was

developed based on the integrated distribution function [9]. To in provide this test, Let X ,..., X , be independent and identically
distributed random variables with distribution function F. The integrated distribution function (IDF) is defined by:
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w(®)=E(X 1) =[A-F)dx,

t

where t is any real number and Y T = min{O, y } Accordingly, the empirical counter part of the IDF above is

v =[a-F, 00 =2 3 (% -0

n

Fn(X)Z%ZIX,sx

Where i=1 is the empirical distribution function and | , is the indicator function of event A. proposed test for
exponentiality based on a weighted squared integrated distance between the IDF and its estimate [9]. This test is defined by:

lar =& [V (1, )y €. D)t
0 )

The test has the following closed form representation:

Klar =£—229’Y‘ _iZ(n —i -1)yY ) +EZY(?)Y<1)’
2 i=1 3n i=1 n i

i<j

X.
whereY. =—L andY .., i=1,2, ..., n are the ith order statistics of Y,,,....Y _.
I X @) 1 n
To improve the power of the test in (1), the weight function is defined by:

ax/o
, >0 [2]. So the modified test is of the form:

w(x)=e"
Klar = @0) [ (V1 (v, ) —w(t, O))e "t

A computational form of this weighted test is given by:

2(3a+2)n e 2, 23 —av,
__23a+2n ~2a°y —E3 e =N @Al Y o)) —2e 0.

_(2"‘3)(1"‘3)2 < (+a)’ nz ni5
Let f(x) be a continuous and differentiable density function. Then, it can be shown that
ftooxf(x)dx =A+etifff)=ett>0 (2)

the left hand side of (2) and its mean is a characterization of the exponential distribution. Based on this characterization we utilize
Klar’s test approach and propose test statistics based on the characterization given in (2).

Our paper is structured as follows. Firstly, we generalized of the chracterization (2). Secondly, we introduce the proposed test and its
properties. Then, based on Monte Carlo simulations, computation of some percentiles, the power of the test and comparisons with
prominent tests are presented. Finally, the main conclusions of this study.

Characterization of the exponential distribution

As mentioned in the introduction, the IDF for the exponential distribution, exp(1), is a characterization for the exponential
distribution that is

[oe]

f xf()dx =0 +t)e tiff f(t)=e 5t >0

t

Theorem 2.1. Let f(x) be a continuous and differentiable density function on R, if ¢ is a positive real number, then

) xmf(x)dx=ce-tZL' iff f(x)=e™, ©
=0 J*
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for some positive constant ¢ .
Proof.
Let f(x)=e™ , then integrating the right hand side ( r.h.s.) of (3) by parts m times yields

© m ¢!
L x"e¥dx =T"(m +1)e“zt_—| :
i—0 J*

and hence the sufficiency condition is proved.
To prove necessity, let f (X) > 0 be a continuous function on (0,00) and assume that (3) is satisfied. Then, differentiating both sides
of (3) with respect to t, we obtain

t2 tm—l tz tm
—t"f({t)=ce [L+t+—+--+ ]-ce ' [l+t+—+--+—]
2! (m-1)! 2! m!
=—ce'—.
m!
e—t
Hence, f(t) = —

For f(t) to be a density function ¢ must be m!.
In particular , for m=1, we have

wa f(x)dx=(L+t) e iff f(x)=e

Test statistics
Let f(x;0,n) = 9‘1e_(Tn),x >n,0 >0, and be the exponential density function with parameter 6 and n , to be denoted by

exp(6,n),and let F(x;6,n) =1— e_(%),x >1n,60 > 0, be the corresponding distribution function. In particular, let
f(x) =f(x;0) and F(x) = F(x; 6).
Assume that X Lreees X , be asimple random sample drawn from a population with density function f(x; 8) and let exp(6, 0) be

the family of exponential distributions with mean (scale parameter) &and location parameter 0. We want to test the hypothesis
Hy: f(x,0) € exp(6,0) versus Hy: f(x,6) & exp(6,0). Following by [10], We have

L}te e dx=["ze* = (1+t)e, @

The empirical counter part of the left hand side of the integral in (4) is
1& X, X .

Y, )==> =" p ly oo = ZZ ., whereZ, :7', i=1,2,..n.
n

i=1
By the strong law of large numbers, Yn (t) converges to its mean which is equal to:
u) = ELY, ()] = E[Z(t)] = L+ t)e ™, where Z(t) = ZI,,.
To compute the variance of Yy(t), we have
13 Var[Z(t)] E[Z*(t)]- (E[Z(1)])°
Vary, (0]= 5 S varlz) 1= [n (0] _ E2°(1)] n( 0I5
i=1

E[Z%(t)] = j 22%e77dz = (t? + 2t + 2)e”!
t

Therefore,
Var[Y ()] =n"[(t* + 2t + 2)e' — (t + D% ]=n""[(t+1)°(L-¢e") +1]e™
If § is unknown, then we replace Y, (t) by
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n

. 1S X, 1& 2
Y, (1) HZ X, >0t :_zzi|2i>t ’

1 LI | e

A n
where Z P = X i /@ ,i=1,2,.nand é — X_n — n-lzx i is the maximum likelihood estimator of 0.
i=1
P . A . 2
A metric measuring the distance between Y, (t)and iz (t) = E[Y,] = E[Z, I, ], such as n(Yn (t) — u, (t)) , may be

suggested as a test for exponentiality. The dependency of this test statistic on t raises a substantial difficulty. In fact, finding the
optimal t that gives the highest power of the test, if exists, is a difficult task. To avoid this problem, we average out over all possible
values of t. A suitable weight function that assures the existence of the weighted average has to be chosen. A convenient choice of this

weight is a function of form e~*¢, for some positive constant k. We have £ (t) = E[YAn ()] = ELY ()] = w(t) , thus if g, (1)
is replaced by (t) the following test, Tn’k , is adopted as a goodness-of-fit test for exponentiality

00 /A~ 2 _
Toi =1 fy (Fa(®) — u(t)) e dt (5)

2

f( Zn:z t—u(t)) e ktdt

i=1

:njo[ ’ZZZ zJ|ZAZ L —2ut)n ZZIIZ t+,u2(t)}ktdt

i,j=1

_n[nzzZZ j ekt — 2nflzz j * (L4 t)e Nt + Iow(1+t)2e(2*k)tdtj

i,j=1
n(k® + 6k +10)
(k+2°

_1s 27,(1-e" ) 2 Z(2+k e M (24 k+(L+K)Z,) + (6)

nk i,j=1 (k 1)

As n— oo, the process n_12(2i|2->t —,u(t)) converges to a zero mean Gaussian process,Z*('[), with covariance
iz i

function K(S,t) = (t? +2t+2) e ' —(L+t)(L+s) e “:s< t.
s, T, > T, = Z*(t))ze‘“dt and

ET, 1> EM]1=[ E(Z' () e “dt
= jo k(t,e ™ dt

= [ +2t+2) e “dt

_ 2(k* +3k +3)

k+1®
A closed form distribution for the test statistic in (5) seems to be hard to derive. Thus, Monte Carlo simulations will be applied to get
the percentiles of the test statistic and then the power of the proposed test.
Table 1 displays the (1 — a) - quantiles for various values of a,k,and the sample size n. These quantiles are obtained, using
Mathematica version 7 software, based on 10,000 samples each of size n from the exponential distribution. We notice the convergence
of the quantiles as n increases. Moreover, as one may expect, the quantiles decrease as each of k or n increases.
An approximation to the distribution of T, . is obtained by usingMINITAB package, version 14.
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Table 1. Selective empirical quantiles for T,, ,with various values of n and k

N K
l-o 0.25 0.5 1 1.25 15 2 2.25 2.5 3
0.900 0.799 0.475 0.178 0.114 0.074 0.035 0.025 0.018 0.010
5 0.950 0.968 0.574 0.217 0.139 0.092 0.043 0.030 0.022 0.012
0.990 1.699 0.844 0.295 0.191 0.130 0.062 0.044 0.032 0.017
0.900 0.972 0.533 0.179 0.111 0.072 0.033 0.024 0.017 0.010
10 0.950 1.231 0.656 0.221 0.138 0.089 0.041 0.029 0.021 0.012
0.990 2.589 1.120 0.342 0.204 0.132 0.060 0.042 0.031 0.017
0.900 1.132 0.582 0.185 0.113 0.072 0.033 0.023 0.017 0.010
20 0.950 1.465 0.726 0.231 0.141 0.090 0.041 0.029 0.021 0.012
0.990 2.589 1.120 0.342 0.204 0.132 0.060 0.042 0.031 0.017
0.900 1.243 0.599 0.180 0.108 0.068 0.031 0.022 0.016 0.009
50 0.950 1.582 0.751 0.240 0.142 0.089 0.040 0.028 0.020 0.011
0.990 2.249 1.160 0.322 0.203 0.132 0.061 0.044 0.032 0.018
0.900 1.182 0.575 0.171 0.105 0.067 0.031 0.023 0.017 0.010
100 0.950 1.562 0.751 0.225 0.135 0.085 0.038 0.028 0.020 0.012
0.990 2.707 1.286 0.377 0.219 0.134 0.058 0.040 0.029 0.016

The results show that k = 1.5 is the value at which the test Tnx has the best power compared to other values of k . Based on these
results, we will consider k = 1.5 only.

Simulated power

As mentioned in the Introduction, a closed form distribution of the proposed test, under the exponentiality assumption, is not
available. So the power of the test will be computed using Monte Carlo simulation. We simulate 10,000 samples of sizes n = 5,10,20,
and 50, from various alternative distributions. These alternatives with various kurtosis will be considered. The alternative distributions
are classified into two classes:

Distributions with low kurtosis ranging from 0-18 and Distributions with moderate and high kurtosis. These kurtosis are computed
and provided in Table 2.

Table 2. Classification of alternative distributions according to their kurtosis

Class 1 Class2
Distributions with Low Distributions with Low Distributions with Moderate and
Kurtosis ( lower than Exponential Kurtosis ( Slightly higher than High
No. distribution ) Exponential distribution ) Kurtosis
Alternatives Kurtosis Alternatives Kurtosis Alternatives Kurtosis
1 Gamma(3,1) 5.0 Gamma(0.8,1) 10.5 Gamma(0.4,1) 18
2 Weibull(1.4,1) 4.84 Gamma(1,1) 9.0 Weibull(0.4,1) 290.60
3 Weibull(1.8,1) 3.56 Gamma(1.4,1) 7.29 Log-Normal(0,0.7) 20.79
4 Weibull(2,1) 3.25 Gamma(1.8,1) 6.33 Log-Normal(0,0.8) 34.37
5 Uniform(0,1) 1.8 Gamma(2,1) 6.0 Log-Normal(0,1) 113.94
6 Half-Normal 3.87 Gamma(2.4,1) 5.5 Log-Normal(0,1.5) 10078.3
7 Beta(0.5,0.5) 1.5 Weibull(0.8,1) 15.74 JSHAPE(0.12) 21.57
8 Beta(2,2) 2.14 Log-Normal(0,0.5) 8.90 JSHAPE(0.2) 73.8
9 Power(0.5) 2.4 Chi-Square(1) 15
10 Power(0.8) 1.90 JSHAPE(0.05) 12.13
11 Power(1.2) 1.79 LIFR(1) 6.43
12 Power(1.4) 1.83
13 Power(2) 2.14
14 Power(3) 291
15 Power(4) 3.79
16 LIFR(2) 0.90
17 LIFR(4) 0.20
18 LIFR(6) 0.09
19 LIFR(10) 0.03
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The power of the test is computed at a significance level of @ = 0.05, for sample size n = 5,10,20, and 50 and is compared to a set of
prominent tests. There tests are Kolmogorov, Cramer-von Mises and Anderson- Darling. The definitions of the used tests are given
below.

i) Kolmogorov- Smirnov (Kol)

The computation from used in simulation is Kol = sup,|FE,(x) — F(x)| = max(D*,D~) , where D* = sup,{F,(x) — F(x)} and
D™ = sup,{F(x) — F,(x)} .

Where Fq(X) is the empirical distribution function and F(x) is the cumulative distribution of the exponential distribution with 0 being

replaced by & = X . Thatis, F(x)=1—e*'".

ii) Cramer-Van Mises (CM)
The following computational form is used
n - 2
CM = 1 +> a-1_ F (X(i) ) , where x(i), i=1,....,n, are the ith order statistics in the sample.
12n 47| 2n
iii) Anderson-Darling (AD)
The computational form is

A=—-n-— %g(zi _1) . [|n F (X(i) ) +1In (1— F (X(n—i+l) ))} , where F(x) and x(i) are as defined in (ii) above.

Based on 10,000 simulations, using the Mathematica version 7 software, the powers of the proposed test, T; s, and all other tests under
consideration are evaluated for samples of sizes 5, 10, 20, and 50 against all classes of alternatives. These powers are reported in
Appendix A, Tables A1,A2, and A3. Furthermore, the power of T, 5 isplotted along the power of each of other tests for all classes of
alternatives under consideration. These plots are displayed in Appendix B.

CONCLUSION

The main conclusions based on the tables and graphs that can be drawn from the simulation results of T,z for all classes of
distributions , all considered sample sizes (n=5,10,20,and 50) and at significance level (&« = 0.05) are the following :

1) The proposed test Tgproves higher power than Kolmogorov- Smirnove test (KS) for all sample sizes when testing against
alternatives with kurtosis lower than that of the exponential distribution. We also note that the proposed test T, sprovesequivalent
power to KS for most of the alternativeswhen testing against alternatives of kurtosis slightly higher than that of the exponential
distribution. Whereas when testing against class 11 of alternatives, KS test has higher power or equivalentto Ty 5 .

2) Compared to Cramer- VVon Mises (CM), T, sproves almost higher power than CM when testing against alternatives with kurtosis
lower than that of the exponential distribution, but when testing against alternatives with kurtosis slightly higher, moderate, and high
power than kurtosis of exponential CM has higher or equivalent power to T4 5.

3) In comparison to Anderson- Darling test (AD), T, sproves higher power than CM for most of the alternativesthat have kurtosis
within class | , whereas AD shows more power than T, 5 when testing against alternatives within class Il .

4) In summary , it is recommended to use a proposed test T, swhen testing a goodness-of-fit for exponential distribution . Specially ,
against distributions with low kurtosis

Conflict of interest. Nil
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Appendix A

Table Al

The simulated (x 100) of the tests under consideration at a significance level of a = 0.05 when testing exponentiality against
distributions with low kurtosis ( lower than exponential distribution)

Sample size n
n=5 n=10 n=20 n=50
Alternatives | KS | CM | AD | Tys | KS | CM | AD | T,s | KS | CM | AD | T,s | KS | CM | AD | Tys
G (3,1) 22 |26 |16 |28 |48 |54 |45 |51 |8 |8 |8 |84 |* Ed i k&

W (1.4,1) 10 |11 |07 |13 |16 |19 |12 |20 |29 |34 |30 |33 |66 |73 |76 |62
W (1.8,1) 19 |23 |15 |26 |40 |48 |37 |47 |69 |8 |79 [8 |99 |* * 99

W (2,1) 25 |30 |20 |33 |52 |62 |51 |62 |84 |92 |92 |92 |* * * *
U (0,1) 16 |19 |14 |25 |28 |37 |28 |47 |52 |65 |61 |78 |93 |98 |99 |99
H-N 08 |08 |06 |10 |11 |12 |09 |15 |17 |20 |16 |22 |40 |47 |45 |40
B (0.5,0.5) 12 |14 |21 |21 |18 |23 |31 |40 |34 |45 |58 |69 |82 |92 |98 |98
B (2,2) 31 |39 |29 |46 |64 |78 |68 |80 |93 |98 |98 |99 |* * * *

Power(05) |49 (63 |50 |71 '8 |9 |91 |97 |99 | * * * * * * *
Power(0.8) 23 |30 |21 |38 |47 |60 |50 |69 |78 |90 |89 |95 |* * * *
Power(1.2) 11 |12 |10 |17 |18 |21 |17 |30 |31 |40 |37 |54 |75 |8 |86 |90
Power(14) |08 |09 |10 |13 |12 |14 |12 |21 |18 |23 |23 |37 |50 |61 |66 |71
Power(2) 07r (08 |20 (09 |10 |12 |26 (14 |15 |18 |40 |25 |36 |47 |76 |52
Power(3) 16 |20 |47 |16 |33 |36 |65 |31 |57 |63 |87 |59 |95 |96 |* 93
Power(4) 30 |34 |66 |28 |59 |62 87 |52 |87 /89 |98 |84 |* * * *

LIFR(2) 09 |10 |O7 (12 |14 |16 |11 |18 |23 |28 |24 |30 |56 |64 |61 |55
LIFR(4) 11 |13 |08 |15 |20 |23 |15 |24 |33 |41 |36 |42 |74 |83 |81 |76
LIFR(6) 12 |14 |09 |17 |23 |26 |18 |28 |40 |49 |43 |50 |82 |90 |90 |85

LIFR(10) 14 |17 |11 |19 |27 |32 |23 |33 |48 |58 |52 |58 |90 |95 |95 |92

An asterisk denotes power 100%

Table A2

The simulated (x 100) of the tests under consideration at a significance level of a = 0.05 when testing exponentiality against
distributions with low kurtosis ( slightly higher than exponential distribution)

Sample size n
n=5 n=10 n=20 n=50

Alternatives KS|CM | AD | T, | KS | CM | AD | T,s | KS | CM | AD | T,s | KS | CM | AD | T,«
G (0.8,1) 06 |06 |10 |05 |07 |[O7 |10 |06 |08 |09 |14 |07 |17 |18 |25 |10
G(11) 05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |05 |03
G (14) 07 |07 (05 |08 |09 |10 (06 |10 |13 |15 |12 |14 |28 |32 |32 |23
G (1.8,1) 10 |11 |07 |13 |17 |20 |13 |19 |29 |35 |32 |32 |69 |77 |80 |63
G (21) 12 |14 |08 |16 |22 |25 |18 |24 |39 |47 |45 |43 |83 |90 |92 |79
G (2.41) 16 |18 |11 |21 |32 |37 |28 |35 |59 |68 |67 |63 |97 |99 |99 | 96
W (0.8,1) O/ |08 |13 |05 |11 |12 |17 |08 |17 |19 |26 |13 |38 |43 |52 |25
L-N (0,0.5) 36 (40 |29 (41 |75 (8L |73 |73 |98 [99 |99 |98 |* * * *
Chis (1) 13 |15 |30 |10 |26 |38 |46 |20 |46 |52 |70 |39 |8 |89 |97 |75
JSHAPE(0.05) |05 |05 |06 |05 |05 |05 |05 |05 |06 |05 |07 |05 |06 |06 |06 |03
LIFR(1) 08 {08 (05 |10 |10 |11 (08 |13 |15 |18 |13 |19 |35 |40 |38 |33

Table A3
The simulated (x 100) of the tests under consideration at a significance level of « = 0.05 when testing exponentiality against
distributions with moderate and high kurtosis
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Sample size n
n=5 n=10 n=20 n=50
Alternatives KS|CM | AD | Tys | KS | CM | AD | Tys | KS | CM | AD | Tys | KS | CM | AD | Ty
G (0.4,1) 20 |23 |47 |17 |42 (46 |67 |32 |71 |75 |90 [61 |98 |99 |* 94
W (0.4,1) 42 |47 |69 |36 |78 |81 |92 |68 |97 |98 |99 |95 |* |* * *
L-N (0,0.7) 14 |17 |10 |17 |29 |33 |24 |28 |55 |61 |60 |51 |97 |97 |99 | 89
L-N (0,0.8) 10 |11 |o7 |12 |17 |20 |13 |16 |30 |33 |33 (27 |72 |75 |8 |55
L-N (0,1) 07 |08 |05 |07 |10 |10 |08 |08 |13 |15 |13 |09 |25 |29 |35 |16
L-N (0,1.5) 16 |16 |21 (11 |33 |35 |37 |24 |57 |61 |62 |46 |91 |93 |94 |82
JSHAPE(0.12) |05 |05 (07 |05 |06 [07 |07 (05 |08 ([O7 |09 |05 |10 |11 |12 |05
JSHAPE(0.2) 06 {07 |08 |05 |08 |09 |09 |06 |11 |12 |14 |07 |20 |22 |23 |11
Appendix B

Power plots of the proposed test T, s along with that of all tests under considerations for all considered classes of alternatives and

sample sizes .
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Figure B1 . Power Plot of the proposed test T; < (continuous line )and the tests Kol .CM .and AD . respectively . for n = 10 and a =
0.05 against distributions with low kurtosis (lower than exponential distribution)
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Figure B2 . Power Plot of the proposed test T,  (continuous line )and the tests Kol .CM .and AD . respectively . for n = 20 and a =
0.05 against distributions with low kurtosis (lower than exponential distribution)
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Figure B3 . Power Plot of the proposed test T,  (continuous line )and the tests Kol .CM .and AD . respectively . for n =50 and a =
0.05 against distributions with low kurtosis (lower than exponential distribution)
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Figure B4 . Power Plot of the proposed test T,  (continuous line )and the tests Kol .CM .and AD . respectively . for n =10 and a =
0.05 against distributions with low kurtosis (slightly higher than exponential distribution)
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Figure B5 . Power Plot of the proposed test T; s (continuous line )and the tests Kol .CM .and AD . respectively . for n = 20 and a =
0.05 against distributions with low kurtosis (slightly higher than exponential distribution)
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Figure B6 . Power Plot of the proposed test T;  (continuous line )and the tests Kol .CM .and AD . respectively . for n =50 and a =
0.05 against distributions with low kurtosis (slightly higher than exponential distribution)
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Figure B7 . Power Plot of the proposed test T,  (continuous line )and the tests Kol .CM .and AD . respectively . for n =10 and a =
0.05 against distributions with moderate and high kurtosis
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Figure B8 . Power Plot of the proposed test T; 5 (continuous line )and the tests Kol .CM .and AD . respectively . for n = 20 and a =
0.05 against distributions with moderate and high kurtosis
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Figure B9 . Power Plot of the proposed test T; 5 (continuous line )and the tests Kol .CM .and AD . respectively . for n =50 and a¢ =
0.05 against distributions with moderate and high kurtosis
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