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Background and aims. Mass-Spring systems are second
order linear differential equations that have variety of
applications in science and engineering. They are the
simplest model for mechanical vibration analysis.
Damping of the oscillatory system is the effect of
preventing or reducing its oscillations gradually with
time. The damping ratio in physical systems is produced
by the dissipation of stored energy in the oscillation. In
this study, the effect of spring constant on the behaviour
of damping in a mass-spring harmonic oscillator using
simulation was investigated. Methods. The three cases
of damping namely the underdamped, the overdamped
and the critically damped cases were studied by varying
the spring constant from 2 N/M to 10 N/M. (2, 4, 6, 8 and
10 N/M). Results. It was found that for the two damping
cases; the underdamped case and the overdamped case,
the effect of increasing the spring constant on the
behavior of harmonic oscillator caused a decrease in the
time of damping and an increase in the displacement,
while in the case of critically damped harmonic
oscillator, there was very little variation in the time of
damping or it was almost steady while there was a
negative decrease in the displacement. Conclusion. It
was found that for the two cases of underdamped and
overdamped harmonic oscillator, the effect of increase
in the value of the spring constant causes a decrease in
the time of damping, while the effect of increasing the
spring constant on the displacement makes it increasing.
In the case of critical damped harmonic oscillator, very
little variation in the time of damping was noticed with
increasing the value of the spring constant. The effect of
increasing the spring constant cause a negative decrease
in the value of displacement in the critically damped
case.
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INTRODUCTION

Mass-Spring systems are second order linear differential equations that have variety of applications in science and
engineering. They are the simplest model for mechanical vibration analysis. Damping occurs when the motion of an
oscillator reduces due to an external force. These types of periodic motions of gradually decreasing amplitude are called
damped simple harmonic motion. In any damped harmonic oscillator, the energy of the oscillator dissipates or decays
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continuously with time. The dissipation of energy is mainly due to the frictional forces. The damped system depends on
the damping coefficient, which in turn depends on the value of the mass, the value of the spring constant and the value
of the damping ratio.

The damping ratio is a measure describing how rapidly the oscillations decay from one bounce to the next. The damping

ratio is a dimensionless number and is a system parameter denoted by £ that can vary from undamped (§ =O),

underdamped (& < 1), through critically damped (£ =1)to overdamped (& >1).

The spring constant of a damped harmonic oscillator is an important parameter for characterizing the system’s
behaviour, and it can be used to calculate other parameters such as the system’s natural frequency or the damping
coefficient.

Various studies had been carried out by a number of researchers on the mass-spring damping systems. Some workers
investigated the effect of mass on the behaviour of the oscillatory system in a mass-spring system. Other researchers
studied mathematical modeling and using simulation [1-8]. Gunawan made an analysis of coupled mass-spring damped
system by changing spring constant, mass and force [9]. Sunday used the concept of systems theory as an approach to
mass-damper-spring and mass-nondamper-spring system [10].

The spring constant Kk is a measure of the stifness of the spring. It is different for different springs and materials. The
larger the spring constant, the stiffer the spring and the more difficult is to stretch. In the case of damped harmonic
oscillator, the spring constant of a damped harmonic oscillator is a measure of how much restoring force the spring
exerts on the oscillator. It is determined by the spring stiffness, mass and damped coefficient. The aim of this work is to
investigate the effect of the spring constant on the behavior of dampers of a simple harmonic oscillator using simulation.
The system under study is a mass-spring system.

METHODS

Theory of damped simple harmonic oscillator (S.H.O)

The theory of damped simple harmonic motion is well-understood and is given in details in most textbooks on
oscillations. Here, in this paper we will outline the main governing equations in brief. Newton’s second law of motion
is written as:

MK =—SX =X oeooeeeeeeeeeeeeeeeeeeeeeeen (1)

Where m is the mass, s is the stiffness, r is the constant of proportionality and hass the dimensions of force per unit
of velocity { The presence of such a term will always result in energy loss }, and x is the displacement.
The behaviour of the displacement x is obtained from the following equations:

MEAIX+ASX=0 o (2)
Where the coefficients m, r and s are constants.
It is seen that when these coefficients are constant, a solution of the form
X=Ce™ i (3)

Can be found.
There are three possible cases of this solution, each will describe a different behaviour of the displacement x with time.
In two of the solutions, the constant C is a constant length, while in the third solution it takes the following form:

C=A+Bt" i (4)
Where A represents the length, while B is the velocity and t is the time.
Taking C as a constant length leads to the velocity
X=aCe”
And the acceleration
X=a’Ce”
And equation (2) can be rewritten as
Ce*(ma?+ra+5)=0 ..coocviciecicecene.(B)

There are two conditions either, Ce“”=0 or (ma2 +ra+ S): 0

This is a quadratic equation whose solution is given as:
2

—-r r s
=—+% e ettt e, 6
“ 2m  \4m®> m ()
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2

. . . S . . .
is the damping resistance and the term — is the stifness of the spring.
m

The term 5
m

The displacement can now be expressed as:

s |

X, =C,e ,
{(%my(;;z;ﬂt
X, =C,e

t

{(—%m»[;;;f

or x=x+x,=C,e +C,et (7)

Now we come to the most important conditions for the value in the bracket.
2

r S . . . .
The bracket ( 5 ——J can have a positive value, zero, or can have a negative value depending on the relative

4m® m
magnitude of the two terms inside it.
It must be noted that each of these three conditions gives one of the three possible solutions stated earlier, and each

solution describes the behaviour of a particular kind of damping. These conditions are:
2 2

S o . .
> — . Here in this case, the damping resistance term
m

1. The value of the bracket may be positive, i.e. 5 5

m m

dominates the stifness term — which results in a heavy damping and causes a dead beat oscillating system.
m

2

. . S L. . .
2. The value of the bracket is zero, i.e. = — , which is the case where the damping resistance term equals
m

m2

to the stifness term. So the balance of these two terms results in a critically damped oscillating system.
2

3. The value of the bracket

S . . . . . .
> <— Is negative, which means that the stifness term dominates the damping
m

4m
resistance term. Here, in this case the system is lightly damped and gives oscillatory damped simple harmonic
motion.

Casel: Heavy damping

2 s

r 2
By letting ZL = p and [ - —J =(Q we can write equation (7) as
m

4m* m
X=e"(Ce*+Cpe ™) i (8)
Where C, and C, are arbitrary in value but have the same dimensions as C . We must note here that the two separate

values of C are allowed because the differential equation (1) is second order.
Now if we, and put C, +C, =F ,and C, —C, =G, the equation for the displacement takes the form:

X :ep{%(eq‘ +e‘“)+%(eqt —e )} ..................... (9)

Or
x=e"(Fcoshqt+Gsinhqt) ........c..ccoeeeeene.....(10)

Equation (10) represents a non-oscillatory behaviour, but the actual displacement will depend upon the initial conditions
that is, the value of x attime t=0.
If x=0 attime t =0, then F =0 and we get the displacement
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—rt 2
— . r 2
x=Ge2n smh[ . —ij b e (11)
dm® m
r’ s
Case2: Critical damping > =—
Am® m
By using the same notation of casel, we can see that g =0 and that the displacement takes the form:
X=€ " (C,4C)) e (12)

This represents the limiting case of the behaviour of casel as the value of ¢ changes from positive to negative. In this
case the quadratic equation in ¢ has equal roots, which in a differential equation solution demands that the constant C

must be written as C = A+ Bt where A is aconstant length and B is a given velocity which depends on the initial or
boundary conditions and it can be verified that the value

—rt
x=(A+Bte™ =(A+Btle™ ... (13)
2
Satisfies the equation mX+rx+sx=0 where ' 5 _5 .
4m m

Case3: Damped S.H.M.

2
As stated before, when

> <— , the damping becomes light, and this case is the most important kind of behaviour
m m
which is the oscillatory damped simple harmonic motion.

r2

sy2. . . . .
5 ——] is an imaginary quantity, because the number under the square root is a negative

4dm m
number. This can be rewritten as:

1 1 1
2 2 2 \2 2 \2
i( r > _EJ :i\/—l{i— ' zj :ii(i— d zj where i =+/-1
dm

So the displacement is given by:

The expression (

—n [arjt — 4[%74;]%
x=Ce2m e \" ™) qCeme \"M™ (14)

RESULTS AND DISCUSSION

Figure 1(a-e) shows the effect of changing the spring constant for values of spring constants 2 ,4, 6, 8 and 10 N/M while
keeping the mass of the spring at 1 kg and c=2, for the underdamped harmonic oscillator.

From these figures, it can be seen that the time of damping decreases with increasing the value of k, e.g., for k=2 N/M,

t=4 sec, and for k= 10 N/M, t=1.1 sec. It is also noticed that the displacement increases from — 2x10* m to about

3.8x10™* m with the increase in the value of the spring constant.

The effect of changing the spring constant on the behaviour of damping for the case of overdamped harmonic oscillator
is shown in figure 2(a-e). It can be seen from these figures that as the value of the spring constant increases the time of
damping decreases. The same picture also holds for the effect of spring constant on displacement as in figure 1, in which
the displacement increased with increasing the spring constant but more slowly.

Figures 3(a-e) presents the effect of the spring constant of the behaviour of damping for the case of critical damped
harmonic oscillator. It is noticed in this case that there was a very little variation in the time of damping or we can say
that it is nearly steady with the increase of the spring constant, while the effect on the displacement was clear, as the

displacement decreased in this case from a negative value of —1.1x10“*m to —0.2x10"m.
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Figure 1. The effect of changing the spring constant on the behaviour of harmonic oscillator for the underdamped
case.
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Figure 2. The effect of changing the spring constant on the behaviour of harmonic oscillator for the overdamped
case.
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L
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Figure 3. The effect of changing the spring constant on the behaviour of harmonic oscillator for the critically
damped case.

CONCLUSION

From this study, it was found that for the two cases of underdamped and overdamped harmonic oscillator, the effect of
changing the spring constant causes a decrease in the time of damping with the increase in the value of the spring
constant, while the effect of increasing the spring constant on the displacement makes it increasing. In the case of critical
damped harmonic oscillator, very little variation in the time of damping was noticed with increasing the value of the
spring constant. The effect of increasing the spring constant cause a negative decrease in the value of displacement in

the critically damped case.
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