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ABSTRACT 

Background and aims. Mass-Spring systems are second 

order linear differential equations that have variety of 

applications in science and engineering. They are the 

simplest model for mechanical vibration analysis. 

Damping of the oscillatory system is the effect of 

preventing or reducing its oscillations gradually with 

time. The damping ratio in physical systems is produced 

by the dissipation of stored energy in the oscillation. In 

this study, the effect of spring constant on the behaviour 

of damping in a mass-spring harmonic oscillator using 

simulation was investigated. Methods. The three cases 

of damping namely the underdamped, the overdamped 

and the critically damped cases were studied by varying 

the spring constant from 2 N/M to 10 N/M. (2, 4, 6, 8 and 

10 N/M). Results. It was found that for the two damping 

cases; the underdamped case and the overdamped case, 

the effect of increasing the spring constant on the 

behavior of harmonic oscillator caused a decrease in the 

time of damping and an increase in the displacement, 

while in the case of critically damped harmonic 

oscillator, there was very little variation in the time of 

damping or it was almost steady while there was a 

negative decrease in the displacement. Conclusion. It 

was found that for the two cases of underdamped and 

overdamped harmonic oscillator, the effect of   increase 

in the value of the spring constant causes a decrease in 

the time of damping, while the effect of increasing the 

spring constant on the displacement makes it increasing. 

In the case of critical damped harmonic oscillator, very 

little variation in the time of damping was noticed with 

increasing the value of the spring constant. The effect of 

increasing the spring constant cause a negative decrease 

in the value of displacement in the critically damped 

case. 

Cite this article. Mohammed O, Al-Nuaimi A. Mathematical Modeling and Simulation of Spring Constant on the Behavior of 

Damping in a Mass-spring Damped Harmonic Oscillator. Alq J Med App Sci. 2023;6(2):433-440. 
https://doi.org/10.5281/zenodo.8219514  

 

INTRODUCTION 
Mass-Spring systems are second order linear differential equations that have variety of applications in science and 

engineering. They are the simplest model for mechanical vibration analysis. Damping occurs when the motion of an 

oscillator reduces due to an external force. These types of periodic motions of gradually decreasing amplitude are called 

damped simple harmonic motion. In any damped harmonic oscillator, the energy of the oscillator dissipates or decays 
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continuously with time. The dissipation of energy is mainly due to the frictional forces. The damped system depends on 

the damping coefficient, which in turn depends on the value of the mass, the value of the spring constant and the value 

of the damping ratio. 

The damping ratio is a measure describing how rapidly the oscillations decay from one bounce to the next. The damping 

ratio is a dimensionless number and is a system parameter denoted by   
that can vary from undamped  0 , 

underdamped  1 , through critically damped  1 to overdamped  1 . 

The spring constant of a damped harmonic oscillator is an important parameter for characterizing the system’s 

behaviour, and it can be used to calculate other parameters such as the system’s natural frequency or the damping 

coefficient. 

Various studies had been carried out by a number of researchers on the mass-spring damping systems. Some workers 

investigated the effect of mass on the behaviour of the oscillatory system in a mass-spring system. Other researchers 

studied mathematical modeling and using simulation [1-8]. Gunawan made an analysis of coupled mass-spring damped 

system by changing spring constant, mass and force [9]. Sunday used the concept of systems theory as an approach to 

mass-damper-spring and mass-nondamper-spring system [10]. 

The spring constant k  is a measure of the stifness of the spring. It is different for different springs and materials. The 

larger the spring constant, the stiffer the spring and the more difficult is to stretch. In the case of damped harmonic 

oscillator, the spring constant of a damped harmonic oscillator is a measure of how much restoring force the spring 

exerts on the oscillator. It is determined by the spring stiffness, mass and damped coefficient. The aim of this work is to 

investigate the effect of the spring constant on the behavior of dampers of a simple harmonic oscillator using simulation. 

The system under study is a mass-spring system. 

 

METHODS 
Theory of damped simple harmonic oscillator (S.H.O) 

The theory of damped simple harmonic motion is well-understood and is given in details in most textbooks on 

oscillations. Here, in this paper we will outline the main governing equations in brief. Newton’s second law of motion 

is written as: 

                                 1 xrsxxm   

Where m is the mass, s  is the stiffness, r  is the constant of proportionality and hass the dimensions of force per unit 

of velocity { The presence of such a term will always result in energy loss }, and x  is the displacement. 

The behaviour of the displacement x   is obtained from the following equations: 

                               20   sxxrxm  

Where the coefficients rm,  and s  are constants. 

 It is seen that when these coefficients are constant, a solution of the form 

                                           3teCx   

Can be found. 

There are three possible cases of this solution, each will describe a different behaviour of the displacement x   with time. 

In two of the solutions, the  constant C  is a constant length, while in the third solution it takes the following form: 

                                       4* BtAC   
Where A  represents the length, while B  is the velocity and t  is the time. 

Taking C as a constant length leads to the velocity 

                                             
teCx    

And the acceleration 

                                                  
teCx  2  

And equation (2) can be rewritten as   

                                      502  srmeC t 
 

There are two conditions  either,     0teC 
     or           02  srm   

This is a quadratic equation whose solution is given as: 

                                    6
42 2

2


m
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The term 
2

2

4m

r
 is the damping resistance and the term 

m

s
  is the stifness of the spring. 

The displacement can now be expressed as: 
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Now we come to the most important conditions for the value in the bracket. 

The bracket 









m

s

m

r
2

2

4
 can have a positive value, zero, or can have a negative value depending on the relative 

magnitude of the two terms inside it. 

It must be noted that each of these three conditions gives one of the three possible solutions stated earlier, and each 

solution describes the behaviour of a particular kind of damping. These conditions are: 

1. The value of the bracket may be positive, i.e. 
m

s

m

r


2

2

4
. Here in this case, the damping resistance term 

2

2

4m

r
 

dominates the stifness term 
m

s
which results in a heavy damping and causes a dead beat oscillating system. 

2. The value of the bracket is zero, i.e. 
m

s

m

r


2

2

4
, which is the case where the damping resistance term equals 

to the stifness term. So the balance of these two terms results in a critically damped oscillating system. 

3. The value of the bracket  
m

s

m

r


2

2

4
  is negative, which means that the stifness term dominates the damping 

resistance term. Here, in this case the system is lightly damped and gives oscillatory damped simple harmonic 

motion. 

 

Case1: Heavy damping 

By letting p
m

r


2
 and   q
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4
    we can write equation (7) as 

                                          821 qtqtpt eCeCex    
Where 1C  and 2C  are arbitrary in value but have the same dimensions as C . We must note here that the two separate 

values of C are allowed because the differential equation (1) is second order. 

Now if we, and put FCC  21  , and GCC  21 , the equation for the displacement takes the form: 

                                            9
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G
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Or 

                                          10sinhcosh qtGqtFex pt  
 

Equation (10) represents a non-oscillatory  behaviour, but the actual displacement will depend upon the initial conditions 

that is, the value of x  at time 0t . 

If 0x  at time 0t , then 0F  and we get the displacement  
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Case2: Critical damping  
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By using the same notation of case1, we can see that 0q  and that the displacement takes the form: 

                                          1221 CCex pt  
 

This represents the limiting case of the behaviour of case1 as the value of q  changes from positive to negative. In this 

case the quadratic equation in  has equal roots, which in a differential equation solution demands that the constant C  

must be written as BtAC   where A  is a constant length and B  is a given velocity which depends on the initial or 

boundary conditions and it can be verified that the value  

                                               132 ptm
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 Satisfies the equation    0 sxxrxm  where  
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. 

 

Case3: Damped S.H.M. 

As stated before, when  
m

s

m

r


2

2

4
, the damping becomes light, and this case is the most important kind of behaviour 

which is the oscillatory damped simple harmonic motion. 

The expression   
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So the displacement is given by: 
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RESULTS AND DISCUSSION 
Figure 1(a-e) shows the effect of changing the spring constant for values of spring constants 2 ,4, 6, 8 and 10 N/M while 

keeping the mass of the spring at 1 kg and c=2, for the underdamped harmonic oscillator.  

From these figures, it can be seen that the time of damping decreases with increasing the value of k, e.g., for k=2 N/M, 

t=4 sec, and for k= 10 N/M, t=1.1 sec. It is also noticed that the displacement increases from m4102  to about 

m4108.3   with the increase in the value of the spring constant. 

The effect of changing the spring constant on the behaviour of damping for the case of overdamped harmonic oscillator 

is shown in figure 2(a-e). It can be seen from these figures that as the value of the spring constant increases the time of 

damping decreases. The same picture also holds for the effect of spring constant on displacement as in figure 1, in which 

the displacement increased with increasing the spring constant but more slowly. 

Figures 3(a-e) presents the effect of the spring constant of the behaviour of damping for the case of critical damped 

harmonic oscillator. It is noticed in this case that there was a very little variation in the time of damping or we can say 

that  it is nearly steady with the increase of the spring constant, while the effect on the displacement was clear, as the 

displacement decreased in this case from a negative value of mtom 44 102.0101.1   . 
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m=1kg,   c=2,   k=2N/m                                                   m=1kg,   c=2,   k=4N/m 

 

 
m=1kg,   c=2,   k=6N/m                                                    m=1kg,   c=2,   k=8N/m 

 
m=1kg,  c=2,   k=10N/m 

Figure 1. The effect of changing the spring constant on the behaviour of harmonic oscillator for the underdamped 

case. 
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                M=100kg,  c=600,  k=200N/m                                           M=100kg,  c=600,  k=225N/m 

 

 
         M=100kg,  c=600,  k=400N/m                                               M=100kg,  c=600,  k=500N/m 

 

Figure 2. The effect of changing the spring constant on the behaviour of harmonic oscillator for the overdamped 

case.  
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                          M=100kg,K=100N/M, C=300                                       M=100kg,K=160N/M, C=300 

 

 
                        M=100kg, K=225N/M, C=300                                                M=100kg, K=260N/M, C=300 

 

Figure 3. The effect of changing the spring constant on the behaviour of harmonic oscillator for the critically 

damped case. 

 

CONCLUSION 
From this study, it was found that for the two cases of underdamped and overdamped harmonic oscillator, the effect of 

changing the spring constant causes a decrease in the time of damping with the increase in the value of the spring 

constant, while the effect of increasing the spring constant on the displacement makes it increasing. In the case of critical 

damped harmonic oscillator, very little variation in the time of damping was noticed with increasing the value of the 

spring constant. The effect of increasing the spring constant cause a negative decrease in the value of displacement in 

the critically damped case. 
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النمذجة والمحاكاة الرياضية لثابت الزنبرك على سلوك التخميد في مذبذب توافقي مخفف 

 بكتلة الربيع

 2* علي النعيمي  1علا محمد 

 .ليبيا -جامعة عمر المختار البيضاء  -كلية العلوم  -قسم الرياضيات 1 

 .ليبيا -البيضاء  -جامعة عمر المختار  -كلية العلوم  -قسم الفيزياء 2 

 

 

 المستخلص 

هي معادلات تفاضللللية ة ية مل الةرجة اليانية لتا ت بي ات متةوعة اي العلوم  Mass-Spring . أنظمةالخلفية والأهداف

نموذج لتحليل الاهتزاز الميكانيكي. التخمية اي الةظام التذ ذب هو تأثير مةع أو ت ليل اهتزازاته  والتةةسلللللللة. سنتا أ سلللللل 

تةريجياً مع مرور الوقت. يتم سنتاج نسللللللبة التخمية اي اانظمة الفيزيا ية عل بريد تبةية ال اقة المخزنة اي التذ ذب. اي 

 طُرقلتيبي  اي المذ ذب التواا ي الكتلي الةا ض  استخةام المحاكاة. هذه الةراسة تم دراسة تأثير ثا ت الزنبرك على سلوك ا

. تمت دراسلللة تالات التخمية اليوه وهي الحالات المةخفضلللة التخمية والحالات الميب ة للااية والميب ة   لللكل الدراسةةةة

. وجة أن نتائجال .(N / M 10و  8و  6و  4و  2) .N / M 10سلى  N / M 2ة ير مل ةول تايير ثا ت الزنبرك مل 

اي تالتي التخمية ؛ الحالة المةخفضة التخمية والحالة المفربة التخمية ، أدى تأثير زيادة ثا ت الزنبرك على سلوك المذ ذب 

التواا ي سلى انخفاض وقت التخمية وزيادة الإزاتة ،  يةما اي تالة المذ ذب التواا ي الميب    كل تاسم ، كان هةاك ال ليل 

. يؤدي تأثير زيادة خاتمةالتوف اي وقت التخمية أو كان ثا تاً ت ريباً  يةما كان هةاك انخفاض سللللللبي اي الإزاتة. جةاً الاة

 .ثا ت الزنبرك سلى انخفاض سلبي اي قيمة الإزاتة اي الحالة الميب ة   كل ة ير

 الةمذجة ، المحاكاة.. نظام كتلة الر يع ، مذ ذب تواا ي مخفف ، ثا ت الر يع ، الكلمات الدالة
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