

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 927

Original article

Implementation of Artificial Neural Networks on Field-

Programmable Gate Arrays

Salim Adrees1∗ , Ala Abdulrazeg1, Wafa Shuaieb2

1Department of Computer Engineering, Faculty of Engineering, Omar Al-Mukhtar University, Al-Bayda, Libya
2Department of Electrical & Electronic Engineering, Faculty of Engineering, Omar Al-Mukhtar University, Al-Bayda, Libya

ARTICLE INFO

Corresponding Email. Salim.ali@omu.edu.ly

Received: 01-08-2024

Accepted: 29-09-2024

Published: 02-10-2024

Keywords. Neural Network, FPGA, Artificial Intelligent, Verilog,

Hardware Design.

Copyright: © 2024 by the authors. Submitted for possible open access

publication under the terms and conditions of the Creative Commons

Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Implementing Artificial Neural Networks (ANNs)

on Field-Programmable Gate Arrays (FPGAs)

provides a promising solution for achieving high-

performance, low-latency, and energy-efficient

computations in complex tasks. This paper

investigates the methodology for mapping ANNs

onto FPGAs, focusing on critical aspects such as

architecture selection, hardware design, and

optimization techniques. By harnessing the

parallel processing capabilities and

reconfigurability of FPGAs, neural network

computations are significantly accelerated,

making them ideal for real-time applications like

image processing and embedded systems. The

implementation process addresses key

considerations, including fixed-point arithmetic,

memory management, and dataflow optimization,

while employing advanced techniques such as

pipelining, quantization, and pruning. The

research compares the accuracy and

performance speedup of ANNs on CPUs versus

FPGAs, revealing that FPGA-based simulations

are 4680 times faster than CPU-based

simulations using MATLAB, without

compromising prediction accuracy.

Cite this article. Adrees S, Abdulrazeg A, Shuaieb W. Implementation of Artificial Neural Networks on Field-Programmable Gate

Arrays. Alq J Med App Sci. 2024;7(4):927-933. https://doi.org/10.54361/ajmas.247405

INTRODUCTION

Artificial intelligent is now a driving force behind various technologies used in websites, cameras, and smartphones. It

is often implemented to identify objects in images and extract them for further processing. The general approach of

machine learning involves taking a real dataset and applying algorithms such as deep learning [1], neural networks [2],

the Perceptron algorithm [3], K-nearest neighbor [4], decision trees [5], among others. Among these, ANN has emerged

as one of the most dominant techniques. ANNs excel in extracting and analyzing data, allowing them to effectively

establish relationships between inputs and outputs.

Artificial Neural Networks

Artificial Neural Networks (ANNs) have emerged as a pivotal technology in the field of artificial intelligence (AI),

driving advancements across numerous domains including computer vision, natural language processing, and

autonomous systems. Inspired by the intricate networks of neurons in the human brain, ANNs are designed to simulate

the way biological systems process information, offering a powerful framework for addressing complex computational

tasks that traditional algorithms struggle to handle [6-8].

The resurgence of interest in ANNs over the past decade can be attributed to several key developments. First, the

exponential growth in computational power, facilitated by the advent of Graphics Processing Units (GPUs) and

distributed computing, has made it feasible to train large-scale neural networks. Second, the availability of massive

https://journal.utripoli.edu.ly/index.php/Alqalam/index
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.54361/ajmas.247405
https://orcid.org/0000-0002-9096-8941

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 928

datasets, driven by the proliferation of digital data in various sectors, has provided the necessary fuel for training deep

neural networks. Finally, innovations in learning algorithms, particularly the backpropagation algorithm and its variants,

have significantly improved the training efficiency and generalization capabilities of ANNs [9].

Structure of an ANN

A General Artificial Neural Network (ANN) is a computational model inspired by the structure and function of the

human brain. It consists of interconnected layers of nodes (neurons), which work together to process information and

make predictions or decisions. Figure 1 shows the general ANN model architecture.

Figure 1. General ANN Model architecture

• Input Layer: This layer receives the input data. Each neuron in this layer represents a feature or attribute of the

input data.

• Hidden Layers: These layers process the inputs received from the input layer. An ANN can have one or multiple

hidden layers, and the neurons in these layers apply various transformations to the data using activation

functions.

• Output Layer: This layer produces the final output. The number of neurons in the output layer depends on the

classes of the application.

Software implementation

The application which will be addressed in this paper is digit recognition. The dataset is self-made binary digit dataset.

The number of classes are 5 classes (1 : 5) which are represented as shown in Figure 2.

Figure 2. Dataset description

Every input image is (5 x 5) binary array, every bit will be an input of each neuron in the input layer, the image will be

reshaped to be (25 x 1). A fully connected 5 layers ANN will be implemented in this application as shown in Figure 3.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 929

Figure 3. Flowchart of the software implementation of ANN

The first layer is an input layer which consist of 25 inputs corresponding to the number of bits in the binary image. The

second layer is the first hidden layer consist of 20 neurons with Rectified Linear Unit (ReLU) activation function. The

corresponding equation in this layer is represented in Equation 1.

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟏[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟏[𝟐𝟎][𝟐𝟓] ∗ 𝒃[𝟐𝟓][𝟏]) Equation 1

The ReLU activation function is one of the most popular in neural networks. ReLU is defined as being zero for all inputs

below a certain threshold (usually zero) and linear for inputs above that threshold. The function can be mathematically

expressed in Equation 2[10].

𝑹𝒆𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙) Equation 2

The second and the third hidden layers consist of 20 neurons and follow the same mathematics as the first layer. Equation

3 and Equation 4 represent the mathematical equations of layer 2 and layer 3 respectively.

 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟐[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟐[𝟐𝟎][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟏[𝟐𝟎][𝟏]) Equation 3

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟑[𝟐𝟎][𝟏] = 𝑹𝒆𝑳𝑼 (𝑾𝟑[𝟐𝟎][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟐[𝟐𝟎][𝟏]) Equation 4

The final layer is the output layer consists of 5 neurons, The corresponding equation in this layer is represented in

Equation 5.

𝑶𝒖𝒕𝒑𝒖𝒕 𝑳.[𝟓][𝟏] = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (𝑾𝟒[𝟓][𝟐𝟎] ∗ 𝑯𝒊𝒅𝒅𝒆𝒏 𝑳. 𝟑[𝟐𝟎][𝟏]) Equation 5

Softmax is commonly used in the output layer of a classifier when dealing with more than two categories. The function

can be mathematically expressed in Equation 6 [11].

𝑺𝒐𝒕𝒎𝒂𝒙 (𝒛)𝒊 = 𝒆𝒛𝒊

∑ 𝒆𝒛𝒋𝒌
𝒋=𝟏

⁄ Equation 6

Converting the following equation to MATLAB code, train the module to find the evaluation characteristics and then

test the module to find the validation characteristics and finally apply profiling function to find the execution time in

CPU. The results show that evaluation accuracy of the module reached 96% and validation accuracy of the module

reached 92%. Figure 4 shows the execution time in MATLAB, and the results show that it took 0.003 s to find the output

of a given image.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 930

Figure 4. Execution time in MATLAB

Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) represent a versatile and powerful technology in digital design and embedded

systems. Since their introduction in the mid-1980s, FPGAs have become essential components across diverse

applications, including telecommunications, automotive systems, high-performance computing, and artificial

intelligence. Unlike Application-Specific Integrated Circuits (ASICs), which are tailored for a single function, FPGAs

offer reconfigurability, enabling designers to modify hardware configurations even after manufacturing. This

adaptability, combined with their parallel processing capabilities, makes FPGAs invaluable for creating custom

hardware solutions tailored to specific needs.

The growing complexity of digital systems, alongside increasing demands for higher performance and lower power

consumption, has accelerated the adoption of FPGAs across various industries. Their reconfigurability allows for rapid

prototyping, iterative design, and the implementation of complex algorithms directly in hardware, circumventing some

limitations of traditional software approaches. Moreover, FPGAs are increasingly utilized in areas like deep learning

acceleration, real-time data processing, and edge computing, where they deliver significant advantages over general-

purpose processors in terms of latency, throughput, and energy efficiency.[12-14].

FPGA implementation

Hardware design of the module is implemented in Vivado Design Suite. it is a comprehensive software suite for the

synthesis and analysis of hardware description language (HDL) designs. It supersedes Xilinx ISE, offering enhanced

features for system-on-chip (SoC) development and high-level synthesis. Unlike its predecessor, Vivado represents a

complete ground-up rewrite and rethinking of the entire design flow, providing a more efficient and integrated

environment for modern hardware design. The programming language used in Vivado is Verilog HLS. The hardware

design will be able to accept a 25 bits binary image and predict the correct digit, which means that the testing algorithm

will be converted to hardware design. After train the module in MATLAB, the learned weights will be exported to

Vivado. The design will be implemented with behavioral modeling style. The flowchart is shown in Figure 5.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 931

Figure 5. Flowchart of Hardware Implementation

The design operates at a clock frequency of 100 MHz, which corresponds to a 20 ns clock cycle. Behavioral modeling,

the highest level of abstraction in Verilog, has been employed for this project. This approach enables the implementation

of the module based on the desired design algorithm without focusing on specific hardware details like the number of

adders, multipliers, or dividers needed. The Vivado software tool was used to create an Algorithmic State Machine

(ASM) chart for the entire design. The module has been successfully synthesized in Vivado and is now ready for testing

with a 5x5 binary image. MATLAB was used to test the module, and the output predictions, shown in Figure 6, indicate

that the module correctly identifies the digit "1" in the image

Figure 6. Results of a given image

By taking the same image and implement it in Vivado design suite to test the module and confirm the accuracy of the

hardware design, the result is shown in Figure 7.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 932

Figure 7. Results of the hardware implementation

The results indicate that the outputs from MATLAB Figure 6 and the Vivado Design Suite Figure 7 are identical,

confirming that the hardware implementation has been correctly designed and synthesized. Additionally, when testing

the module with five different binary images, the outputs in both MATLAB and Vivado were consistent, further

validating the design's accuracy.

The second aspect of the evaluation focused on execution time. The timing simulation in the Vivado Design Suite

revealed that the output delay is 200 ns, corresponding to 10 clock cycles. This demonstrates a significant improvement

in timing performance. Table 1 compares the timing simulation between the CPU and FPGA, showing that the FPGA

simulation is 4680 times faster than the CPU simulation.

Table 1. comparison between CPU and FPGA timing simulation

Timing
CPU FPGA

0.003 s (150000 clock cycles) 200 ns (10 clock cycles)

CONCLUSION

One of the most challenging aspects of this paper is exporting inputs from the MATLAB implementation due to the

complexity of the code. Additionally, working with fixed-point numbers is generally easier and more efficient than using

floating-point numbers. Implementing floating-point arithmetic in hardware requires IP cores, which can consume many

clock cycles. However, using fixed-point numbers does not significantly impact the results, as the introduced error is

negligible. The FPGA module was designed using behavioral modeling, a style that abstracts away specific hardware

details like the number of adders, multipliers, and registers. The software tool automatically determines these resources,

which is a key advantage of this modeling approach. However, a significant drawback is that behavioral designs can be

challenging for the software tool to synthesize and translate into a hardware design. If the module is highly complex,

behavioral modeling may not be the most suitable choice. Finally, in real-time applications, execution time is critical.

For certain algorithms, implementing the most critical parts in an FPGA can minimize output delay without

compromising the accuracy of the results.

Conflict of interest. Nil

REFERENCES
1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44; doi: 10.1038/nature14539.

2. Muthuramalingam A, Himavathi S, Srinivasan E. Neural Network Implementation Using FPGA: Issues and Application.

Int J Inform Technol. 2007;4.

3. Taright Y, Hubin M. FPGA implementation of a multilayer perceptron neural network using VHDL. ICSP '98 1998 Fourth

International Conference on Signal Processing (Cat No98TH8344). 1998;2:1311-4 vol.2.

4. Li Z-H, Jin J, Zhou X-g, Feng Z-H. K-nearest neighbor algorithm implementation on FPGA using high level synthesis.

2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). 2016:600-2.

https://journal.utripoli.edu.ly/index.php/Alqalam/index

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Adrees et al. Alq J Med App Sci. 2024;7(4):927-933 933

5. Narayanan R, Honbo D, Memik G, Choudhary A, Zambreno J: Interactive presentation: An FPGA implementation of

decision tree classification. In: Proceedings of the conference on Design, automation and test in Europe. Nice, France:

EDA Consortium; 2007: 189–94.

6. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in

pharmaceutical research. Journal of pharmaceutical and biomedical analysis. 2000;22(5):717-27.

7. Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. Backpropagation and the brain. Nature Reviews Neuroscience.

2020;21(6):335-46.

8. Hecht-Nielsen R. Theory of the backpropagation neural network. In: Neural networks for perception. Elsevier; 1992. p.

65-93.

9. Talib MA, Majzoub S, Nasir Q, Jamal D. A systematic literature review on hardware implementation of artificial

intelligence algorithms. The Journal of Supercomputing. 2021;77(2):1897-938.

10. Bai Y: RELU-function and derived function review. In: SHS Web of Conferences. vol. 144: EDP Sciences; 2022: 02006.

11. Kouretas I, Paliouras V: Simplified hardware implementation of the softmax activation function. In: 2019 8th international

conference on modern circuits and systems technologies (MOCAST). IEEE; 2019: 1-4.

12. Wang C, Luo Z. A review of the optimal design of neural networks based on FPGA. Applied Sciences. 2022;12(21):10771.

13. Yang H, Zhang J, Sun J, Yu L. Review of advanced FPGA architectures and technologies. Journal of Electronics (China).

2014;31(5):371-93.

14. Adrees SA, Abdulrazeg AA. Capsule Network Implementation On FPGA. Journal of Pure & Applied Sciences.

2020;19(5):50-4.

 مصفوفات البوابات القابلة للبرمجة

 2شعيب وفاء ،1الرازق عبد علاء ،∗1م ادريسالس

 الهندسة، جامعة عمر المختار، البيضاء، ليبيا قسم هندسة الحاسوب، كلية 1
 قسم الهندسة الكهربائية والإلكترونية، كلية الهندسة، جامعة عمر المختار، البيضاء، ليبيا 2

 المستخلص

حلا واعد ا لتحبيق عملياا على ميببفوفاا البواباا البابلة للبرم ة ميداني ا يوفر تطبيق الشبببكاا العيبببية ااعببطناعية

الشبكاا طبيقمنه ية ت يتحبق هذا البحث منوكفاءة في استخدام الطاقة في المهام المعبدة. و زمن أقلحسابية عالية الأداء

ألية ، مع التركيز على ال وانب الحرجة مثل اختيار ميبفوفاا البواباا البابلة للبرم ة ميداني اعلى العيببية ااعبطناعية

 برم ةوتبنياا التحسبين. من خلا ااسبتفادة من قدراا المعال ة المتوازية واعادة الدائرة الإلكترونية وتيبميم ميمالتيب

، يتم تسببريع عملياا حسبباب الشبببكة العيبببية بشببكل كبير، مما ي علها مثالية ميببفوفاا البواباا البابلة للبرم ة ميداني ا

عملية التنفيذ تشبببمل بعل المفاهيم مثل معال ة اليبببور والأن مة المضبببمنة. التي تتطلب ااسبببت ابة اللح يةللتطبيباا

، وادارة الذاكرة، وتحسببين تدفق البياناا، مع اسببتخدام تبنياا متبدمة مثل ااعداد الكسببريةحسبباب ، بما في ذلك ااسبباسببية

خوارزمية أداء سرعة يبارن البحث بين دقة و. تبليل الوحداا االكترونية المستخدمةو تنفيذ اكثر من عملية في وقت واحد

، ميبفوفاا البواباا البابلة للبرم ة ميداني ا الشببكاا العيببية ااعبطناعية على وحداا المعال ة المركزية مبابل وحداا

تطبيق مرة من 4680أسببببرق بمبدار ميببببفوفاا البواباا الببابلبة للبرم بة ميبداني ا علىتطبيق الخوارزميبة أن حيبث وجد

 .مع المحاف ة على دقة المخرجاا ، MATLAB على وحدة المعال ة المركزية باستخدام الخوارزمية

التيبميم ، Verilog، الذكاء ااعبطناعي، ميبفوفاا البواباا البابلة للبرم ة ميداني ا . الشببكة العيببية، الكلمات المفتاحية

 .االكتروني

https://journal.utripoli.edu.ly/index.php/Alqalam/index

