AlQalam

Incidence and Risk Factors of Post Dural Puncture Headache After Spinal Anesthesia in Tripoli Hospitals

Abdurraouf Said*[©], Hosam Elmahmoudi, Aisha Elansari, Lamia Elbadri, Shaima Elfakhri, Aya Alhejaji

Department of Anesthesia and Intensive Care, Faculty of Medical Technology, University of Tripoli, Tripoli, Libya

Corresponding email. <u>abdu.said@uot.edu.ly</u>	ABSTRACT
Received: 12-02-2024 Accepted: 09-04-2024 Published: 17-04-2024	Post Dural Puncture Headache (PDPH) remains prominent clinical concern to the present day an common complication seen in the field of anesthesiolog and pain medicine. Identification of such risk factors is crucial step in the rational modification of anesthet practice and evaluation of therapeutic interventions. The study was conducted to demonstrate the incidence and study was conducted to demonstrate the incidence and
Keywords . Post Dural Puncture Headache, Lumber puncture, Spinal Anesthesia, Surgical Procedure, Postoperative Patients.	risk factors of PDPH in patients after spinal Anesthes during three days' post operations at general hospital Tripoli, Libya. In this study certain factors related patient history, baseline clinical state or anesther technique might be associated with an increased risk f this side effect, so it was collected historical, physiology and technical data to determine their association wi PDPH. Out of total of 100 patients distributed over
Copyright : © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u>	different hospitals admitted over a period (from November 2020 to April 2021) 27% of them have PDPH, while 92.5% of cases with PDPH are femaled that 55.6% of PDPH cases are between 20 and 25 year old, and this percentage getting smaller as patients ge older, most of the operations were caesarean section, a rate of 58%, followed by lower abdominal surgeri with 19% of cases, and orthopedic surgeries with 17% cases, while the lowest percentage was for the Urolog surgeries. 55% of cases with PDPH are classified (case I), and 44% of them are classified as (case I 81.5% of PDPH cases used noncutting needles. In the study the PDPH remains the most problem hospitalized patients after spinal Anesthesia at Tripp hospitals can be caused by variety of risk factor associated with ASA physical states, nonprofession
	technique, the females are more common than males an the percentage increasing in early age group.

https://doi.org/10.54361/ajmas.2472010

INTRODUCTION

Post Dural Puncture Headache (PDPH) is a direct consequence of the puncture hole in the dura, which results in loss of CSF (acts as a cushion supporting and protecting the brain) causes downward displacement of the brain and resultant stretch on sensitive supporting structures [1]. Pain also results from distention of blood vessels, which must compensate for the loss of CSF because of the fixed volume of the skull.

The pain associated with PDPH begins from the first 24 hours to 72 hours (about 3 days) after transgression of the dura but can occur immediately even up to several months after the event. Most cases of PDPH will resolve spontaneously within 7 days if left untreated [2], Initial treatment is usually conservative and consists of bed rest, intravenous fluids, analgesics, and caffeine (500 mg (about half the weight of a small paper clip) IV) [3,4]. However, in cases where the

headache is severe enough that conservative management becomes unsustainable. Epidural blood patch (EBP), if not contraindicated, is the treatment of choice in these cases, especially if symptoms suggestive of cranial nerve involvement are present which can normally be relieved (in >90% cases) by injecting 20–30 mL of the patient's own venous blood into the epidural space under strict aseptic conditions [3,5].

The characteristic feature of PDPH is its postural component: it appears or intensifies with sitting or standing and is partially or completely relieved by recumbency. This feature is so distinctive that it is difficult to consider the diagnosis in its absence [6].

PDPH is typically occipital or frontal (or both) and is usually described as dull or throbbing. Associated symptoms such as nausea, vomiting, anorexia, and malaise are common. Ocular disturbances, blurred vision or photophobia may occur and are believed to result from stretching of the cranial nerves, most commonly cranial nerve VI, as the brain descends because of the loss of CSF [7].

Spinal anesthesia results from the injection of a local anesthetic drug directly into the cerebrospinal fluid (CSF) within the subarachnoid (intrathecal) space. The spinal needle can only be inserted below the second lumbar and above the first sacral vertebra; the upper limit is determined by the termination of the spinal cord and the lower limit because the sacral vertebrae are fused, and access becomes impossible. When the tip of the needle is correctly positioned, CSF will appear at the hub. A single injection of local anesthetic is normally used, limiting the technique's duration. A fine, 25–27 G needle with a 'pencil point' or tapered point (for example, a Whitacre or Sprotte needle) is used with the patient in the lateral decubitus, sitting, or less commonly, the prone position [8,9]. Although spinal anesthesia has long been considered a safe technique used for surgical procedures involving the lower abdominal area, perineum, and lower extremities in orthopedic, urologic, and obstetric surgery, but is often followed by PDPH [10].

It was hypothesized that certain factors related to patient history, baseline clinical state or anesthetic technique might be associated with an increased risk for this side effect, so it was collected historical, physiologic, and technical data to determine their association with PDPH.

Several factors contribute to the development of headache after lumbar puncture, including needle size, needle design, direction of the bevel, and number of LP attempts. Namely, using smaller diameter and non-cutting needles is correlated with a lower incidence of headache after LP but it is more difficult to use and has a greater failure rate than larger needles of either type. Additionally, insertion of the needle with the bevel parallel to the dural fibers facilitates closure of the hole and minimizes cerebrospinal fluid leakage [11].

PDPH remains a prominent clinical concern to the present day and common complication seen in the field of anesthesiology and pain medicine. Identification of such risk factors is a crucial step in the rational modification of anesthetic practice and evaluation of therapeutic interventions. The goal of this study was to determine the incidence and risk factors of PDPH.

METHODS

Study design

The study employed an observational design and was conducted across five distinct hospitals from November 2020 to April 2021, focusing on patients who had undergone surgical procedures. Approval for the study was obtained from the research committee of the Faculty of Medical Technology at the University of Tripoli, Libya.

Data collection

Data was gathered from 100 patient records, encompassing pre-operative patient information, the nature of the surgical procedure, and post-operative follow-up conducted by contacting the patient over a period of three days. This was undertaken to ascertain the occurrence of Post-Dural Puncture Headache (PDPH). The included details were belonged to patients underwent surgical procedures involving the lower abdominal area, perineum, and lower extremities within the disciplines of orthopedic, urologic, and obstetric surgery.

Statistical analysis

The collected data was subjected to rigorous statistical analysis using IBM SPSS statistics 26 and Microsoft excel. Descriptive statistics such as frequencies, means, and standard deviations were employed to summarize the demographic characteristics of the patient cohort, as well as the key variables related to surgical procedures and anesthetic techniques. Additionally, inferential statistical tests, including t-tests, chi-square tests, and regression analysis, were utilized to explore potential associations between the collected variables and the incidence of PDPH. The significance level was set at p < 0.05 for all statistical tests.

RESULTS

Out of the total number of cases, 75% of the cases were female while 25% were males since 44% of cases were in the twenties and the reason for this may be because most of the cases underwent cesarean, with heights less than 170 cm, and 55% of wights were less than 76kg (table 1).

Personal Information		n	%
Gender	Female	75	%75
Gender	Male	25	%25
	20-29	44	44%
	30-39	28	28%
	40-49	12	12%
Age groups	50-59	4	4%
	60-69	6	6%
	70-79	1	1%
	80-89	5	5%
Uight	<=170	84	%84
Hight	>=170	16	%16
Wight	<=76	55	%55
Wight	>=76	45	%45

Table 1. Demographic characteristics: gender, age group, height, and weight.

In the dataset, it is evident that 59% of cases are either pregnant or breastfeeding (Table 2). When queried about the use of anticoagulant medication, the majority were found to be negative, with 18% confirming its use, including 13% specifically mentioning aspirin. Regarding the presence of disturbances or disorders in the nervous, respiratory, or cardiovascular systems, most cases were found to have no such conditions. Similarly, 85% of cases had stable blood pressure, while 13% suffered from hypertension. Furthermore, the majority of cases did not have diabetes, and were not identified as smokers or alcohol users. Overall, it was observed that 98% of cases did not have a history of disease, with 64% classified as normal healthy patients, and 35% classified as patients with mild systemic disease.

 Table 2. Patients Health Status Overview

Health status			%
	No	18	%18
Pregnant or breastfeeding	Yes	59	%59
	None	23	%23
Taking regular anti-clotting	No	82	%82
treatment	Yes	18	%18
	Clopidogrel	1	%1
Anticoagulant drugs	Nadroparin Calcium	4	%4
Anticoaguiant ui ugs	Aspirin	13	%13
	None	82	%82
Discurdon in condicus conten	No	89	%89
Disorder in cardiovascular system	Yes	11	%11
Blood pressure disturbance	Hypertension	13	%13
	Hypotension	2	%2
	None	85	%85
Disordon in pospinotony system No		96	96%
Disorder in respiratory system	Yes	4	4%
Diabetes	No	86	86%
Diabetes	Yes	14	14%
Disordor in norvos system	No	98	98%
Disorder in nerves system	Yes	2	2%
Smoker or alcoholic	No	92	92%
Smoker of alcoholic	Yes	8	8%

https://journal.utripoli.edu.ly/index.php/Alqalam/index_eISSN 2707-7179

Regular treatment for sedative or anti-depressant drugs	No	100	100%
	Yes	0	0%
History of carsickness	No	98	%98
	Yes	2	%2
ASA physical status	Ι	64	64%
	II	35	35%
	III	1	1%

The results pertaining to the surgical procedure include its classification, the attributes of the anesthesia employed, the administration method, and the occurrence of postoperative headaches (Table 3).

Information about surgery			%
Caesarean sections			58%
The type of surgery	Orthopedic surgery	17	17%
	Urologic surgery	6	6%
	Lower abdominal surgery	19	19%
The position of animal numerups	Lateral	1	1%
The position of spinal puncture	Sitting	99	99%
	L2, L3	3	3%
The site of spinal puncture	L3, L4	77	77%
	L4, L5	20	20%
Shape of needle used in spinal	Cutting	10	10%
puncture	Noncutting	90	90%
	25	45	45%
Diameter of needle used in spinal	26	53	53%
puncture	27	2	2%
The local anesthesia used in spinal	Lidocaine	7	7%
puncture	Bupivacaine	93	93%
The anesthetic dose	<=Median dose	95	95%
	>=Median dose	4	4%
	Missing	1	1%
	1,2	38	38%
Sedation score 30min after blockade	3,4	61	61%
	5,6	1	1%
Vasoconstrictor used in spinal	Ephedrine	66	66%
puncture	Phenylephrine	0	0%
puncture	None	34	34%
	Mild	14	14%
	Moderate	7	7%
PDPH	Severe	6	6%
	None	72	72%
	Missing	1	1%
	24	7	7%
	30	1	1%
Headache onset time	48	10	10%
	72	9	9%
	None	73	73%

As indicated in (table 3), most procedures were caesarean sections, accounting for 58% of the cases, followed by lower abdominal surgeries at 19%, orthopedic surgeries at 17%, with urologic surgeries having the lowest percentage. Moreover, 99% of the cases underwent spinal puncture in a seated position, with 77% of them receiving the needle insertion between the third and fourth lumbar vertebrae, while 20% had it placed between the fourth and fifth lumbar vertebrae. Regarding the needle characteristics, 99% of cases utilized a non-cutting needle with a diameter ranging between 25- and 26-gauge sizes. It is noteworthy that 93% of cases received Bupivacaine, with 95% administered a

dosage below the median. Additionally, 61% of cases achieved a sedation score ranging between 3 and 4, 30 minutes post-blockade, while 66% of them were administered Ephedrine as a vasoconstrictor.

In response to inquiries regarding postoperative headaches, 27% of cases acknowledged experiencing them. Among these cases, 14% reported mild headaches, while the remaining individuals described the intensity of their headaches as moderate (7%) or severe (6%). Interestingly, 10% of the cases experiencing headaches noted that the onset of pain occurred more than 48 hours following the surgical procedure.

Since the data are either ordinal or nominal, in addition to the small size of sample, nonparametric methods to analyze data and get inferences were used. To detect relations between "(PDPH) headache after spinal. A" and all other factors under study, χ^2 *dependency test* was used, for a level of significance $\alpha = 0.05$, to test the following hypotheses:

H_0 : The (PDPH) is independent of the factor under study H_1 : The (PDPH) is depending on the factor under study

The results are as follows:

Variables		Calculated value	P-value
	Pearson Chi-Square	4.455	.216
PDPH after spinal puncture Vs	Contingency Coefficient	0.234	.216
Pregnant or breastfeeding	D.F	3	
I regnant of breastreeunig	Decision	Accept	
PDPH after spinal puncture	Pearson Chi-Square	2.421	.490
	Contingency Coefficient	.155	.490
Taking regular anti-clotting treatment	D.F	3	
	Decision	Accept	
PDPH after spinal puncture	Pearson Chi-Square	7.00	.042
Vs	Contingency Coefficient	.258	.042
History of carsickness	D.F	3	
	Decision	Reject I	
	Pearson Chi-Square	20.933	.000
PDPH after spinal puncture Vs	Contingency Coefficient	.420	.000
VS Disorder in cardiovascular system	D.F	3	
	Decision	Reject I	H ₀
PDPH after spinal puncture	Pearson Chi-Square	51.198	.000
	Contingency Coefficient	.584	.000
Vs Blood pressure disturbance	D.F	6	
	Decision	Reject H ₀	
	Pearson Chi-Square	2.740	.433
PDPH after spinal puncture Vs	Contingency Coefficient	.164	.433
VS Disorder in respiratory system	D.F	3	
1 V V	Decision	Accept	H ₀
	Pearson Chi-Square	2.127	.546
PDPH after spinal puncture Vs	Contingency Coefficient	.145	.546
VS Diabetes	D.F	3	
Diabetes	Decision	Accept	
DDDU often eninel nuneture	Pearson Chi-Square	.765	.858
PDPH after spinal puncture Vs	Contingency Coefficient	.088	.858
Disorder in nerves system	D.F	3	
	Decision	Accept	
PDPH after spinal puncture	Pearson Chi-Square	2.703	.440
Vs	Contingency Coefficient	.163	.440
Smoker or alcoholic	D.F	3	
	Decision	Accept	H ₀
PDPH after spinal puncture	Pearson Chi-Square	12.308	.196

Table 4. Results of χ^2 dependency test

https://journal.utripoli.edu.ly/index.php/Alqalam/index_eISSN 2707-7179

Vs	Contingency Coefficient	.333	.196
The type of surgery	D.F	9	
	Decision	Accept	H ₀
	Pearson Chi-Square	6.133	.105
PDPH after spinal puncture Vs	Contingency Coefficient	.242	.105
VS The position of spinal puncture	D.F	3	
The position of spinal puncture	Decision	Accept	H ₀
DDDII often grinel nun etune	Pearson Chi-Square	8.813	.184
PDPH after spinal puncture Vs	Contingency Coefficient	.286	.184
The site of spinal puncture	D.F	6	
The site of spinal puncture	Decision	Accept	H_0
	Pearson Chi-Square	7.121	.048
PDPH after spinal puncture Vs	Contingency Coefficient	.259	.048
Vs The shape of needle in spinal	D.F	3	
The shape of needle in spinar	Decision	Reject	H ₀
PDPH after spinal puncture Vs The diameter of needle in S. P	Pearson Chi-Square	6.018	.421
	Contingency Coefficient	.239	.421
	D.F	6	
The diameter of needle in 5.1	Decision	Accept H ₀	
DDDU after spinal nuncture	Pearson Chi-Square	2.372	.499
PDPH after spinal puncture Vs	Contingency Coefficient	.153	.499
The local anesthesia used in S. P	D.F	3	
The local ancesticesia used in 5.1	Decision	Accept	
DDDII often enined numerune	Pearson Chi-Square	5.920	.116
PDPH after spinal puncture Vs	Contingency Coefficient	.239	.116
The anesthetic dose	D.F	3	
The anesthetic dose	Decision	Accept	
PDPH after spinal puncture	Pearson Chi-Square	9.015	.173
Vs	Contingency Coefficient	.290	.173
VS Vasoconstrictor used in S. P	D.F	6	
vasoconstrictor used in 5.1	Decision	Accept	
PDPH after spinal puncture	Pearson Chi-Square	13.043	.042
Vs	Contingency Coefficient	.341	.042
ASA physical status	D.F	6	
AGA physical status	Decision	Reject	H_0

From the previous table, and by comparing the P-value of Pearson chi-square with $\alpha = 0.05$, if P-value < 0.05, the null hypothesis that the PDPH is independent of the factor under study was accepted, but if it's not, the null hypothesis will be rejected and accept the alternative hypothesis that the PDPH is depending on the factor under study. So, the null hypothesis has been rejected five times for five factors as follows:

1. History of carsickness:

To analyze the link between (PDPH) and carsickness history, a contingency has been calculated:

Headache after spinal puncture	History of carsickness		
	No	Yes	
Mild	14	0	
Moderate	7	0	
Severe	5	1	
None	70	1	

Table 5. Contingency table for PDPH and history of carsickness

2. Disorder in cardiovascular system:

To assess the link between (PDPH) and cardiovascular disorders, a contingency has been calculated:

https://journal.utripoli.edu.ly/index.php/Alqalam/index eISSN 2707-7179

Headacha often minal nunatura	Disorder in cardiovascular system		
Headache after spinal puncture	No	Yes	
Mild	12	2	
Moderate	6	1	
Severe	2	4	
None	67	4	

Table 6. Contingency table for PDPH and disorder in cardiovascular system

It is evident that severe PDPH is more prevalent among cases who responded affirmatively when queried about cardiovascular system disorders, while mild PDPH is more likely among cases who answered negatively.

3. Blood pressure disturbance:

To assess the relation between (PDPH) and blood pressure disturbance.

Severe	2	4
None	67	4
e PDPH is more prevalent amor	ig cases who resp	onded affirmativel
	1'1 1	1 1

Table 7. Contingency table for PDPH and blood pressure disturbance

Headache after spinal	Blood pressure disturbance			
puncture	Hypertension Hypotension None			
Mild	2	0	12	
Moderate	0	0	7	
Severe	4	2	0	
None	7	0	65	

It is apparent that severe PDPH is most likely to occur in cases with blood pressure disturbances, particularly among those with hypertension.

4. Shape of needles in spinal puncture:

Contingency has been calculated to assess the link between PDPH and shape of needles:

Headache after spinal	The shape of needle in spinal anesthesia		
puncture	Cutting	Noncutting	
Mild	3	11	
Moderate	0	7	
Severe	2	4	
None	5	67	

From the data, it is apparent that PDPH is more likely to occur in cases where a non-cutting needle was utilized during the spinal procedure.

5. ASA physical status:

To analyze the link between PDPH and the ASA physical status, a contingency has been calculated:

Table 9. Contingency table for PDPH and the ASA physical status

	ASA physical status		
Headache after spinal puncture	Ι	II	III
Mild	11	3	0
Moderate	4	3	0
Severe	0	6	0
None	48	23	1

It is observable that severe PDPH is more likely to manifest in cases classified as patients with mild systemic disease.

loalam

DISCUSSION

This study aligns with numerous previous studies conducted worldwide on PDPH, particularly in its reliance on critical factors that may increase the likelihood of its occurrence, such as health status (ASA classification), physician experience, needle design, and surgical conditions [12-14].

By examining 100 patients across five different hospitals, this study aimed to identify all potential factors affecting PDPH and determine which factors have the most significant impact. Out of the patients surveyed, 27% experienced PDPH, a percentage that aligns closely with the findings of previous study [12] reporting a PDPH incidence of 28.7%. However, it contrasts with the results reported in other studies, which documented an 18.1% and 25.9% occurrence of PDPH among pediatric cases [13,14].

As previously mentioned, 75% of the cases are females, with 92.5% of PDPH cases being females. Although this hypothesis is not statistically significant, it suggests that women are more prone to experiencing PDPH. This observation aligns with the findings of study by Zorrilla-Vaca, A *et al.* [15] and is consistent with another previous study [14], which indicated that among children, girls are more predisposed to developing PDPH compared to boys.

Regarding age groups, this study showed that 55.6% of PDPH cases were between 20 and 25 years old, and this percentage getting smaller as patients get older; this approves what comes in the study reported by Schmittner MD *et al*, and Zorrilla-Vaca, A *et al* [12,15], but disagrees with the previous study [14], which shown an increasing in PDPH with increasing age in teenagers. Zorrilla-Vaca, A *et al*. [15] revealed that, most cases had orthopedic and urologic surgeries, while in this study showed that most of the operations were Caesarean section, at a rate of 58%, followed by Lower Abdominal surgeries with 19% of cases, and Orthopedic surgeries with 17% of cases, while the lowest percentage was for the Urologic surgeries.

Previous study reported that, 96% of cases of PDPH were classified as normal healthy patients (case I), while 4% were classified as patients with mild systemic disease (case II) [12]. In comparison, in this study, 55% of cases with PDPH were classified as (case I), and 44% of them are classified as (case II); because of this convergent percentage, the relation between ASA physical status and PDPH incidence has been analyzed, which was statistically significant; and it was also significant for other health status factors such as the history of carsickness, disordering in the cardiovascular system, and blood pressure disturbance.

Most previous studies have relationships between the PDPH incidence and the shape of a needle that used. Bezov, D *et al*, [16] revealed that, smaller needles produce a lower incidence of PDPH than larger needles of the same type. Furthermore, using noncutting produced a lower incidence of PDPH than cutting needles. On the other hand, the findings of the preceding study [16] diverge from the current study concerning the tip design of spinal needles. Notably, the former study reported an incidence of approximately 81.5% of PDPH cases associated with the utilization of noncutting needles., and there is statistically significant evidence about dependency between noncutting needles and severe PDPH.

CONCLUSION

PDPH remains the most problem in hospitalized patients after spinal anesthesia at Tripoli hospitals can be caused by variety of risk factors, in current study most risk factors associated with ASA physical states showed that ASAI patients classified as normal healthy patients more incidence to the PDPH. It occurs in patients instead of noncutting needle used because of nonprofessional technique (direction of the bevel and lumber of LP attempts), the females are more common than males to have PDPH. Furthermore, the percentage of PDHP is increasing at the early age group.

Conflict of interest. Nil

REFERENCES

- 1. Monserrate AE, Ryman DC, Ma S, Xiong C, Noble JM, Ringman JM, et al. Factors associated with the onset and persistence of post–lumbar puncture headache. JAMA Neurol. 2015 Mar;72(3):325-332
- 2. Wu CL, Rowlingson AJ, Cohen SR, Michaels RK., Courpas GE, Joe EM, Liu, et al. Gender and postdural puncture headache. J American Society of Anesthesiologists, 2006;105(3):613-618.
- **3.** Rafique M, Taqi A. The causes, prevention and management of post spinal backache: an overview. Anaesth Pain & Intensive Care 2011;15(1):65-69.
- **4.** Russell R, Laxton C, Lucas DN, Niewiarowski J, Scrutton M, Stocks G. Treatment of obstetric postdural puncture headache. Part 1: conservative and pharmacological management. International journal of obstetric anesthesia, 2019, 38, 93-103.
- 5. Patel R, Urits I, Orhurhu V, Orhurhu MS, Peck J, Ohuabunwa E, et al. A comprehensive update on the treatment and management of postdural puncture headache. Current pain and headache reports. 2020;24:1-9.
- 6. Orimolade E, Olateju S, Mejabi J, Adetoye A, Ikem I, Ayeni F, et al. Variation in the Duration of Recumbency Post-Spinal Anaesthesia in Relation to the Occurrence of Post-Dural Puncture Headache. J Clin & Diag Res. 2018:12(10):9-12.

- Wu L, Chen S, Jiang X, Cheng Y, and Zhang W. Opioids for the prevention of post-dural puncture headache in obstetrics: a systematic review and meta-analysis of efficacy and safety. Pain Physician, 24(7), E1155. Regional Anesthesia. Philadelphia: W.B. Saunders Co; 2021, 1923. p. 449.
- **8.** Neal J, Kopp S, Pasternak J, Lanier W, Rathmell J. Anatomy and pathophysiology of spinal cord injury associated with regional anesthesia and pain medicine: 2015 update. Regional Anesthesia & Pain Medicine, 2015;40(5):506-525.
- 9. Dalens B, Monnet J, Harmand Y. Spinal anesthesia. In Pediatric Regional Anesthesia 2019, (pp. 417-435). Routledge.
- **10.** Lingaraj M. A Comparative Study of Incidence of Post Dural Puncture Headache Using 27G Quincke and 27g Whitacre Spinal Needles." PhD diss., Rajiv Gandhi University of Health Sciences (India), 2016.
- **11.** Weji B, Obsa M, Melese K, Azeze G. Incidence and risk factors of post dural puncture headache: prospective cohort study design. Perioperative Medicine. 2020;9(1):1-6.
- **12.** Schmittner MD, Terboven T, Dluzak M, Janke A, Limmer ME, Weiss C, et al. High incidence of post dural puncture headache in patients with spinal saddle block induced with Quincke needles for anorectal surgery: a randomized clinical trial. Int J Colorectal Dis. 2010 Jun;25(6):775-781.
- **13.** Bakshi SG, Gehdoo RSP. Incidence and management of post-dural puncture headache following spinal anaesthesia and accidental dural puncture from a non-obstetric hospital: A retrospective analysis. Indian J Anaesth. 2018 Nov;62(11):881-886.
- 14. Kiblasan JIA, Yagob SA, Briones GV, Elwahaishi SS. Comparative Study on Conventional Side Effects of Spinal Anesthesia among Postoperative Patients in Selected Hospitals of Misurata, Libya. International Editorial Advisory Board. 2016;8(1):35.
- **15.** Zorrilla-Vaca A, Mathur V, Wu CL, and Grant MC. The impact of spinal needle selection on postdural puncture headache: a meta-analysis and metaregression of randomized studies. Regional Anesthesia & Pain Medicine, 2018;43(5):502-508.
- **16.** Bezov D, Ashina S, Lipton RB. Post-dural puncture headache: Part II–prevention, management, and prognosis. Headache. 2010 Oct;50(9):1482-1498.

معدلات الإصابة وعوامل الخطر لصداع ما بعد ثقب الجافية بعد التخدير الشوكي في معدلات الإصابة وعوامل الخطر لصداع ما بعد ثقب الجافية بعد التخدير الشوكي في

عبد الرؤوف سعيد *، حسام المحمودي، عائشة الانصاري لمياء البدري، شيماء الفاخري، أية الحجاجي

قسم التخدير والعناية الفائقة، كلية التقنية الطبية، جامعة طرابلس، طرابلس، ليبيا

المستخلص

لا يزال صداع ما بعد ثقب الجافية مصدر قلق سريري بارز حتى يومنا هذا ومن المضاعفات الشائعة التي تظهر في مجال التخدير وطب الألم. يعد تحديد عوامل الخطر هذه خطُّوة حاسمة في التعديل العقلاني لممارسة التخدير وتقييم التَّدخلات العلاجية. أجريت هذه الدر اسة لتوضيح مدى حدوث وعوامل خطر الإصبابة بصداع ما بعد ثقب الجافية في المرضى بعد التخدير النخاعي خلال ثلاثة أيام بعد العمليات في المستشفى العام في طرابلس، ليبيا. في هذه الدراسة، قد ترتبط بعض العوامل المتعلقة بتاريخ المريض أو الحالة السريرية الأساسية أو تقنية التخدير بزيادة خُطر هذا التأثير الجانبي، لذلك تم جمع البيانات التاريخية و الفسيولوجية و التقنية لتحديد ار تباطها بصيداع ما بعد ثقب الجافية من بين إجمالي 100 مريض موز عين على 5 مستشفيات مختلفة تم قبولهم خلال فترة (من نوفمبر 2020 إلى أبريل 2021)، 27% منهم مصابون بصداع ما بعد ثقب الجافية ، في حين أن 92.5% من حالات صداع ما بعد ثقب الجافية هم من الإناث، وأن 55.6% من حالات صداع ما بعد ثقب الجافية تتر اوح أعمار هم بين 20 عامًا. و25 سنة، ويقل هذه النسبة مع تقدم السن، وكانت معظم العمليات قيصرية بنسبة 58%، تليها جراحات أسفل البطن بنسبة 19% من الحالات، وجراحات العظام بنسبة 17% من الحالات، بينما كانت أقل نسبة لعمليات جراحة المسالك البولية. 55% من حالات صداع ما بعد ثقب الجافية تصنف على أنها (الحالة الأولى)، و44% منها تصنف على أنها (الحالة الثانية)، 81.5% من حالات صداع ما بعد ثقب الجافية تستخدم إبر غُير قابلة للقطع. في هذه الدر إسة، يظل صداع ما بعد ثقب الجافية هو المشكلة الأكثر لدى المرضى في المستشفى بعد التخدير النخاعي في مستشفيات طر ابلس بمكن أن يكون ناجمًا عن مجموعة متنوعة من عوامل الخطر، المرتبطة بالحالات الفيزيانية ASA ، والتقنيات غير المهنية، وتكون الإناث أكثر شيوعًا من الذكور وتزداد النسبة في سن مبكرة. مجمو عة الكلمات الدالة. الصداع بعد ثقب الجافية، البزل القطني، التخدير الشوكي، العمليات الجراحية، مرضى ما بعد الجراحة.