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Abstract 
In this paper, we introduce an analytical method for deriving an approximate solution to the time-dependent 
fifth-order Korteweg-de Vries (fKdV) equation using the conformable fractional derivative (CFD) via the ARA-
residual power series method (ARA-RPSM). The proposed method operates by initially applying the ARA-
transform to the given fKdV equation. Subsequently, approximate series solutions are derived using Taylor’s 
expansion. These series solutions are then converted back into the original domain through the inverse ARA-
transform. It is a general method for time-dependent nonlinear differential equations and has wide 

applicability. The efficiency and flexibility of this method make it useful for a wide range of time-dependent 
nonlinear differential equations. To demonstrate its effectiveness, we apply it to the time-dependent fKdV 
equation, showcasing how it generates reliable and accurate series solutions quickly. 
Keywords. Fifth-Order Korteweg-De Vries Equation, Conformable Fractional Derivative, Approximate 
Solutions; ARA-Residual Power Series; Fractional Calculus.   

 

Introduction 
Fractional partial differential equations (FPDEs) are like regular PDEs but use fractional (non-integer) 

derivatives. This makes them well-suited for systems with memory and long-range effects—such as 
anomalous diffusion—where the present depends on the past and interactions are not purely local. Because 

of this, FPDEs help explain behaviors across scales and are widely used in physics, finance, biology, and 

engineering. The mathematical foundation is fractional calculus, which extends differentiation and 

integration beyond whole numbers [1–3], and many real systems show history-dependent behavior that 

motivates these models [4–12].  
Fractional differential equations have been studied using several definitions of fractional differentiation, 

including the Riemann–Liouville [13] and Caputo [14,15] operators. Among recent proposals, the 

conformable derivative [16] has attracted particular attention. Broadly, fractional derivatives can be 

classified as nonlocal or local: the Riemann–Liouville and Caputo operators are nonlocal, whereas the 

conformable derivative is local. Asıf Yokuş et al. [17] recently compared the Caputo and conformable 

formulations and found that, over a limited parameter range, they display broadly similar behavior with only 
minor differences—differences that stem from the distinct memory properties of local versus nonlocal 

operators. 

To solve fractional-order differential equations (FODEs), researchers use a variety of methods, including the 

variational iteration method, homotopy perturbation and homotopy analysis methods, the exp-function 

method, the Adomian decomposition method, adaptive finite elements, sinc-collocation, and the residual 
power series method (RPSM). Surveys of commonly used techniques can be found in [18–25]. RPSM has 

been successfully applied to many linear and nonlinear models. In 2020, it was combined with the Laplace 

transform to form the Laplace residual power series method (LRPSM) [26,27]. 

In this work, we further develop RPSM by pairing it with the ARA transform (ARAT) [28–32], yielding the ARA 

residual power series method (ARA-RPSM). In the literature, numerous integral transforms like the Laplace, 

Fourier, Sumudu, and ARA transforms have been developed to address differential equations. Among these, 
the ARA transform, introduced in 2020, has emerged as a powerful method for solving fractional-order 

differential equations and systems. One of its notable advantages lies in its ability to handle differential 

equations with singular points near zero. Additionally, the ARA transform proves effective in solving specific 

functions where the Laplace transform is not applicable, as highlighted in [28]. This approach is fast, uses 

little memory, and is less sensitive to round-off errors. 
The time-fractional fifth-order KdV equation generalizes the classical fifth-order Korteweg-de Vries (KdV) 

model by introducing a fractional time derivative. Instead of the usual first-order time derivative, it uses a 

derivative of fractional order, enabling a more faithful description of shallow-water and other nonlinear wave 

phenomena, especially in media with memory-dependent behavior. 

Numerous studies have focused on KdV-type equations owing to their significance. For example, [33] 

presented analytical and numerical solutions to the fifth-order KdV equation; [34] proposed hyperelliptic 
solutions for certain modified KdV equations; and [35] reported a numerical investigation of the stochastic 

KdV equation. To address the generalized Kawahara equation, [36] introduced an operational matrix 

approach, while [37] employed a finite-difference method for the fractional KdV equation.  

In this article, we apply the ARA residual power series method (ARA-RPSM) to obtain an approximate 

solution of the time-fractional KdV equation. This powerful approach provides a new series-based scheme 
for approximating the solution of a nonlinear fractional-order partial differential equation. The series 
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coefficients can be computed rapidly using a limit-at-infinity argument, which reduces the time and effort 

required compared with other techniques. The proposed ARA–residual power series method (ARA-RPSM) is 

implemented here to get an approximate solution of the nonlinear homogeneous time fractional KdV 

equation of the form 
 

                                                          𝐷𝑡
∝𝑢 + 𝜖𝑢𝑢𝑥 + 𝜌𝑢𝑥𝑥𝑥 + 𝜏𝑢𝑥𝑥𝑥𝑥𝑥 = 0                                                   (1) 

 
Subject to the initial condition (IC) 

𝑢(𝑥, 0) = 𝑒𝑥                                                                    (2) 

 

Where 

• 𝑢(𝑥, 𝑡) is the wave amplitude.  

• 𝐷𝑡
∝𝑢 =

𝜕∝𝑢

𝜕𝑡  ∝  is  the CFD of a fractional-order  ∝  with 0 <∝ ≤ 1 .  

• 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
  ,  𝑢𝑥𝑥𝑥 =

𝜕3𝑢

𝜕𝑥3 , and 𝑢𝑥𝑥𝑥𝑥𝑥 = 
𝜕5𝑢

𝜕𝑥5 are the first, third, and fifth spatial derivatives, respectively.   

• 𝜖, 𝜌, 𝜏 are nonzero parameters  

 

This article is organized as follows. Section 'Basic definitions and theorems' reviews essential concepts, 

definitions, and results related to conformable derivative, fractional power series, and the ARA transform. 
Section 'Methodology of the ARA-RPSM' implements the ARA-RPSM to construct and predict solutions of the 

nonlinear time-fractional fifth-order KdV equation. Section 'Conformable approximate solution' evaluates 

the capability, simplicity, and efficiency of the proposed method by solving an example. Then the discussions 

on the obtained findings and main conclusion are demonstrated. 

 

Basic definitions and theorems 
In this section. we present the definition of the conformable fractional derivative. Also, the definition of the 

ARA transform, some properties, and theorems related to the fractional ARA-RPSM are revisited. 

Definition 1. [16] Given a function 𝑓 ∶ [0, ∞) →ℝ  then the “conformable fractional derivative” of the 𝑓 of order 

  0 <∝ ≤ 1 is defined by: 

𝑓  ∝(𝑡) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1− ∝) − 𝑓(𝑡)

𝜀
.    

 

for all 𝑡 > 0 , and  𝑙𝑖𝑚
𝑡→0

𝑓∝(𝑡) exists then defined 𝑓∝(0) = lim
𝑡→0

𝑓∝(𝑡) . 

 

Definition 2. [28].The ARA transform of order 𝑛 of the continuous function 𝑢(𝑥, 𝑡) on the interval I × [0, ∞] 
for the variable 𝑡 , is defined by 

𝐺𝑛[𝑢(𝑥, 𝑡)] = 𝑟 ∫ 𝑡𝑛−1

∞

0

𝑒−𝑟𝑡𝑢(𝑥, 𝑡) 𝑑𝑡   , 𝑟 > 0. 

 

In the following arguments, we present some basic properties of the ARA transform [23] that are essential 
in our research. 

 

Properties of the ARA-transform [28-30] 

Let 𝑢(𝑥, 𝑡) and 𝑙(𝑥, 𝑡) be continuous functions on I × [0, ∞)  in which the ARA-transform for the variable 𝑡 
exists. Then we have:  

  

(1) 𝐺𝑛[𝑎𝑢(𝑥, 𝑡) + 𝑏𝑙(𝑥, 𝑡)] = 𝑎𝐺𝑛[𝑢(𝑥, 𝑡)] + 𝑏𝐺𝑛[𝑙(𝑥, 𝑡)],   where 𝑎 and 𝑏 are nonzero constants. 

 

(2) lim
𝑟→∞

𝐺1 [𝑢(𝑥, 𝑡)] = 𝑢(𝑥, 0),     𝑥 ∈ 𝐼, r > 0. 

 

(3) 𝐺1[𝐷𝑡
∝𝑢(𝑥, 𝑡)] = 𝑟∝𝐺1[𝑢(𝑥, 𝑡)] − 𝑟∝𝑢(𝑥, 0),    0 <∝ ≤ 1, 𝑥 ∈ 𝐼, 𝑟 > 0. 

 

(4) 𝐺2[𝑡∝] =
𝛤(∝+2)

𝑟∝+1 ,    ∝> 0, 𝑟 > 0. 

 

(5) 𝐺2[𝐷𝑡
∝𝑢(𝑥, 𝑡)] = 𝑟∝𝐺2[𝑢(𝑥, 𝑡)]−∝ 𝑟∝−1𝐺1[𝑢(𝑥, 𝑡)] + (∝ −1)𝑟∝−1𝑢(𝑥, 0),    0 <∝≤ 1, 𝑥 ∈ 𝐼, 𝑟 > 0. 

 

(6) 𝐺2[𝐷𝑡
2∝𝑢(𝑥, 𝑡)] = 𝑟2∝𝐺2[𝑢(𝑥, 𝑡)] − 2 ∝ 𝑟2∝−1𝐺1[𝑢(𝑥, 𝑡)] + (2 ∝ −1)𝑟2∝−1𝑢(𝑥, 0) + (∝ −1)𝑟∝−1𝐷𝑡

∝𝑢(𝑥, 0),   0 <∝ ≤
1, 𝑥 ∈ 𝐼, 𝑟 > 0. 

 

(7) lim
𝑟→∞

𝑟𝐺2[𝑢(𝑥, 𝑡)] = 𝑢(𝑥, 0),    𝑥 ∈ 𝐼, 𝑟 > 0. 
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Theorem 1 [30]. Suppose that the fractional power series (FPS) representation of the function the form  

𝑢(𝑥, 𝑡) at 𝑡 = 0  has the form  

𝑢(𝑥, 𝑡) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥)𝑡𝑛 ∝, 𝑚 − 1 < ∝ ≤ 𝑚, 𝑚 = 1,2, … ,   0 ≤ 𝑡 ≤ 𝛽. 

 

If 𝑢(𝑥, 𝑡) and 𝐷𝑡
𝑛 ∝𝑢(𝑥, 𝑡) are continuous on I × [0, ∞), Then the coefficients 𝑎𝑛(𝑥) have the form 

 

𝑎𝑛(𝑥) =
𝐷𝑡

𝑛∝𝑢(𝑥,0)

𝛤(𝑛∝+1)
,     for 𝑛 = 0,1,2, … where  𝐷𝑡

𝑛∝ = 𝐷𝑡
∝. 𝐷𝑡

∝ … 𝐷𝑡
∝  (n- times). 

 

Theorem 2 [30]. Let 𝑢(𝑥, 𝑡) be 𝑎 continuous function on 𝐼 × [0, β] in which the ARA-transform for the variable 

𝑡 exists and has the FPS representation 

 

𝐺2[𝑢(𝑥, 𝑡)] = ∑
𝑙𝑛(𝑥)

𝑟𝑛∝+1

∞

𝑛=0

           ,                 0 <∝ ≤ 1, 𝑥 ∈ 𝐼  and  𝑟 > 0.                                        (3) 

 

Then 

 
𝑙𝑛(𝑥) = (𝑛 ∝ +1) 𝐷𝑡

𝑛∝𝑢(𝑥, 0).                                                                                             (4) 
 

Remark 1. 

i. The 𝑘𝑡ℎ 𝑇ℎ𝑒 truncated series of the series representation (3) is defined as follows 

 

𝐺2[𝑢(𝑥, 𝑡)]𝑘 = ∑
𝑙𝑛(𝑥)

𝑟𝑛∝+1

𝑘

𝑛=0

.                                                                                                    (5) 

ii. If the ARA-transform of order two of the function 𝑢(𝑥, 𝑡) has the series representation (3), 

Then the ARA-transform of order one can be expressed as follows: 

𝐺1[𝑢(𝑥, 𝑡)] = ∑
𝑙𝑛(𝑥)

(𝑛 ∝ +1)𝑟𝑛∝
,

∞

𝑛=0

                                                                                          (6) 

and the 𝑘𝑡ℎ𝑇ℎ𝑒 truncated series is defined as follows: 

𝐺1[𝑢(𝑥, 𝑡)]𝑘 =  ∑
𝑙𝑛(𝑥)

(𝑛 ∝ +1)𝑟𝑛∝
                                                                              .         (7)

𝑘

𝑛=0

  

 

iii. The inverse of the ARA-transform of order two for the fractional power series (3) is  

𝑢(𝑥, 𝑡) = 𝐺2
−1 [∑

𝑙𝑛(𝑥)

𝑟𝑛∝+1

∞

𝑛=0

] (𝑡) = ∑
𝐷𝑡

𝑛∝𝑢(𝑥, 0)

𝛤(𝑛 ∝ +1)
𝑡𝑛∝

∞

𝑛=0

. 

 

 

Theorem 3 [30]. Let 𝑢(𝑥, 𝑡) be 𝑎 continuous function on 𝐼 × [0, β] in which the ARA-transform for the variable 

𝑡 exists. 

 

Assume that  𝐺1[𝑢(𝑥, 𝑡)] has the following series representation: 

 

𝐺1[𝑢(𝑥, 𝑡)] = ∑
𝑐𝑛(𝑥)

𝑟𝑛∝

∞

𝑛=0

 

 where 

𝑐𝑛(𝑥) = 𝐷𝑡
𝑛∝𝑢(𝑥, 0). 

 

If |𝐺1[𝐷𝑡
(𝑛+1)∝𝑢(𝑥, 𝑡)]| ≤ 𝑀 on 0 < 𝑟 ≤ 𝑑,  then the remainder 𝑅𝑛(𝑥, 𝑟)  Satisfies the following inequality: 

 

|𝑅𝑛(𝑥, 𝑟)| ≤
𝑀(𝑥)

𝑟(𝑛+1)∝
  , 𝑥 ∈ 𝐼, 0 < 𝑟 ≤ 𝑑. 

 

 Methodology of the ARA-RPSM 
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In this section, we present the methodology of ARA-RPSM for solving the time-dependent fifth-order 

Korteweg-de Vries (fKdV) equation. The main idea of the proposed method is based on applying the ARA-

transform on the given equation and using Taylor's expansion to create solitary solutions.  

To perform the ARA-RPSM, consider the nonlinear homogeneous time fractional KdV equation (1) when  

𝜖 = 1,  𝜌 = −1, 𝜏 = 1. 

Operate the ARA-transform of order two 𝐺2 with respect to the variable 𝑡, on both sides of equation (1), we 

get 

 

𝐺2[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] = 𝐺2[𝑁[𝑢(𝑥, 𝑡)]] + 𝐺2[𝑅[𝑢(𝑥, 𝑡)].                                                            (8) 

Dy to the initial condition: 

𝑢(𝑥, 0) = 𝑙0(𝑥)                                                                                                   (9) 
Here, 𝐷𝑡

𝛼𝑢(𝑥, 𝑡) represents the conformable derivative of 𝑢(𝑥, 𝑡),  𝑁[𝑢(𝑥, 𝑡)] and 𝑅[𝑢(𝑥, 𝑡)] denote nonlinear and 

linear terms of Eq. (1), respectively. 

Using property 6 and IC (9), Eq. (8) becomes. 
 

𝑟𝛼𝐺2[𝑢(𝑥, 𝑡)] − 𝛼𝑟𝛼−1𝐺1[𝑢(𝑥, 𝑡)] + (𝛼 − 1)𝑟𝛼−1𝑢(𝑥, 0) − 𝐺2[𝑁(𝐺2
−1[𝐺2[𝑢(𝑥, 𝑡)]]) − 𝐺2[𝑅(𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]])])]

= 0.                                                                                                                                                                                            (10) 
Assume that the ARA-RPS solution of Eq.(10) has the following series representations. 

𝐺1[𝑢(𝑥, 𝑡)] = ∑
𝑙𝑛(𝑥)

(𝑛𝛼 + 1)𝑟𝑛𝛼
,                                                                                    (11)

∞

𝑛=0

 

𝐺2[𝑢(𝑥, 𝑡)] = ∑
𝑙𝑛(𝑥)

𝑟𝑛𝛼+1
.                                                                                                (12)

∞

𝑛=0

 

Using the fact in property 7. 

𝑙𝑖𝑚
𝑟→∞

𝑟𝐺2 [𝑢(𝑥, 𝑡)] = 𝑢(𝑥, 0), 

We have 𝑙𝑛(𝑥) = 𝑎(𝑥). Hence, the series representation (12) becomes. 

𝐺2[𝑢(𝑥, 𝑡)] =
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
+ ∑

𝑙𝑛(𝑥)

𝑟𝑛𝛼+1

∞

𝑛=2

                                                                  (13) 

To find 𝑙1(𝑥), we multiply both sides of Eq.(13) by 𝑟𝛼+1 and take the limit as 𝑟 → ∞ to obtain. 

𝑙𝑖𝑚
𝑟→∞

𝑟𝛼+1 𝐺2[𝑢(𝑥, 𝑡)] = 𝑙𝑖𝑚
𝑟→∞

𝑟𝛼 𝑙0 + 𝑙1(𝑥) + 𝑙𝑖𝑚
𝑟→∞

∑
𝑙𝑛(𝑥)

𝑟𝑛𝛼+1
,

∞

𝑛=2

                                                           

Which is equivalent to. 

𝑙1(𝑥) = 𝑙𝑖𝑚
𝑟→∞

𝑟(𝑟𝛼𝐺2[𝑢(𝑥, 𝑡)] − 𝑟𝛼−1𝑙0(𝑥)). 

Property 5 yields that. 

𝑙1(𝑥) = 𝑙𝑖𝑚
𝑟→∞

𝑟(𝐺2[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] + 𝛼𝑟𝛼−1𝐺1[𝑢(𝑥, 𝑡)] − 𝛼𝑟𝛼−1𝑙0(𝑥)) 

         = 𝑙𝑖𝑚
𝑟→∞

𝑟𝐺2[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] + 𝑙𝑖𝑚

𝑟→∞
𝛼(𝑟𝛼𝐺1[𝑢(𝑥, 𝑡)] − 𝑟𝛼𝑙0(𝑥)). 

Using property 3, we get. 

𝑙1(𝑥) = 𝑙𝑖𝑚
𝑟→∞

𝑟𝐺2[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] + 𝛼 𝑙𝑖𝑚

𝑟→∞
𝐺1[𝐷𝑡

𝛼𝑢(𝑥, 𝑡)]. 

Properties 2 and 7 lead to. 

𝑙1(𝑥) = (𝛼 + 1)𝐷𝑡
𝛼𝑙0(𝑥). 

 

Thus, the ARA-RPS solution of Eq. (10) has the series representations. 

𝐺1[𝑢(𝑥, 𝑡)] = 𝑙0(𝑥) +
𝑙1(𝑥)

𝑟𝛼
+ ∑

𝑙𝑛(𝑥)

(𝑛𝛼 + 1)𝑟𝑛𝛼
 ,                                                            (14)

∞

𝑛=2

 

𝐺2[𝑢(𝑥, 𝑡)] =
𝑙0

𝑟
+

(𝛼 + 1)𝑙1(𝑥)

𝑟𝛼+1
+ ∑

𝑙𝑛(𝑥)

𝑟𝑛𝛼+1
 .                                                                 (15)

∞

𝑛=2

 

and the  𝑘𝑡ℎ 𝑇ℎ𝑒 truncated series expansion of Eq. (14) and Eq. (15) have the  

𝐺1[𝑢(𝑥, 𝑡)]𝑘 = 𝑙0(𝑥) +
𝑙1(𝑥)

𝑟𝛼
+ ∑

𝑙𝑛(𝑥)

(𝑛𝛼 + 𝛼1)𝑟𝑛𝛼
 ,                                                         (16)

𝑘

𝑛=2

 

𝐺2[𝑢(𝑥, 𝑡)]𝑘 =
𝑙0(𝑥)

𝑟
+

(𝛼 + 1)𝑙1(𝑥)

𝑟𝛼+1
+ ∑

𝑙𝑛(𝑥)

𝑟𝑛𝛼+1
  .                                                        (17)

𝑘

𝑛=2

 

To find the coefficients of the series expansions in Eqs. (16) and (17), we define the ARA-residual function 

of Eq. (10) as follows. 
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𝐺2𝑅𝑒𝑠(𝑥, 𝑟) = 𝐺2[𝑢(𝑥, 𝑡)] −
𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)] +

(𝛼 − 1)

𝑟
𝑢(𝑥, 0) −

1

𝑟𝛼
𝐺2 [𝑁 (𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]) −
1

𝑟𝛼
𝐺2[𝑅(𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]])])]

= 0.                                                                                                                                                                                           (18) 
and the 𝑘ℎ𝑡  ARA-residual function is.  

𝐺2𝑅𝑒𝑠𝑘(𝑥, 𝑟) = 𝐺2[𝑢(𝑥, 𝑡)]𝑘 −
2𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)]𝑘 +

(2𝛼 − 1)

𝑟
𝑙0(𝑥)

−
1

𝑟𝛼
𝐺2 [𝑁 (𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝑘

) −
1

𝑟𝛼
𝐺2 [𝑅 (𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝑘

)])]  , 𝑘 = 2,3, …  .                                          (19) 

 
In order to find the coefficients 𝑙𝑛(𝑥), 𝑛 ≥ 2 in the series expansion (17), multiply both sides of Eq.(19) by 

𝑟𝑘𝛼+1,   𝑘 = 2,3, …, and take the limit as 𝑟 → ∞, then solve the equations. 

𝑙𝑖𝑚
𝑟→∞

𝑟𝑘𝛼+1 𝐺2𝑅𝑒𝑠𝑘(𝑥, 𝑟) = 0, 𝑘 = 2,3, …, 

The following facts are needed to obtain the ARA-RPS solution. 

𝐺2𝑅𝑒𝑠(𝑥, 𝑟) = 0,                                𝑥 ∈ 𝐼, 𝑟 > 0. 
 𝑙𝑖𝑚
𝑘→∞

𝐺2 𝑅𝑒𝑠𝑘(𝑥, 𝑟) = 𝐺2𝑅𝑒𝑠(𝑥, 𝑟),      𝑥 ∈ 𝐼, 𝑟 > 0. 

𝑙𝑖𝑚
𝑟→∞

𝑟 𝐺2𝑅𝑒𝑠(𝑥, 𝑟) = 0, 𝑎𝑛𝑑 𝑙𝑖𝑚
𝑟→∞

𝑟 𝐺2 𝑅𝑒𝑠𝑘(𝑥, 𝑟) = 0,      𝑥 ∈ 𝐼, 𝑟 > 0. 

 𝑙𝑖𝑚
𝑟→∞

𝑟𝑘𝛼+1 𝐺2 𝑅𝑒𝑠(𝑥, 𝑟) = 𝑙𝑖𝑚
𝑟→∞

𝑟𝑘𝛼+1 𝐺2 𝑅𝑒𝑠𝑘(𝑥, 𝑟) = 0,         𝑥 ∈ 𝐼, 𝑟 > 0. 

The obtained coefficients 𝑙𝑛(𝑥) are substituted in the series solution (12), then operate the inverse ARA 

transform of order two G2
−1 to get the solution of the IVP (1) and (2) in the original space. 

 
 
Conformable approximate solution for fKdV equation using ARA-RPSM  

Considering the time-fractional fKdV equation as follows [39 ]: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) 𝑢𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) 𝑢𝑥𝑥𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 0 , 0 < 𝛼 ≤ 1                             (20) 

Initial Condition  
𝑢(𝑥, 0) = 𝑒𝑥 .                                                                                                    (21) 

The  exact solution for Eq. (20) when 𝛼 =1 is [38]  

𝑢(𝑥, 𝑡) = 𝑒𝑥−𝑡  . 
 Operating ARA- of order two on Eq.(20) 
 

𝐺2[𝐷𝑡
𝛼𝑢(𝑥, 𝑡)] + 𝐺2[𝐺2

−1[𝐺2𝑢(𝑥, 𝑡)]
𝜕

𝜕𝑥
𝐺2

−1[𝐺2𝑢(𝑥, 𝑡)]] − 𝐺2[𝐺2
−1[𝐺2𝑢(𝑥, 𝑡)]

𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2𝑢(𝑥, 𝑡)]] + 𝐺2[
𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2𝑢(𝑥, 𝑡)]]

= 0.                                                                                                                                                                                           (22) 

 

Which corresponds to r  

𝑟𝛼𝐺2[𝑢(𝑥, 𝑡)] − 𝛼𝑟𝛼−1𝐺1[𝑢(𝑥, 𝑡)] + (𝛼 − 1)𝑟𝛼−1𝑢(𝑥, 0) + 𝐺2 [𝐺2
−1[𝐺2[𝑢(𝑥, 𝑡)]]

𝜕

𝜕𝑥
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]

− 𝐺2[𝐺2
−1[𝐺2[𝑢(𝑥, 𝑡)]]

𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]] + 𝐺2 [
𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]] = 0.                                                (23) 

Simplifying Eq. (23), we have.  

𝐺2[𝑢(𝑥, 𝑡)] −
𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)] +

𝛼 − 1

𝑟
𝑙0(𝑥) +

1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝜕

𝜕𝑥
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]

−
1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]

+
1

𝑟𝛼
𝐺2 [

𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]] .                                                                                                                                       (24) 

Consider expanding the ARA-RPS of Eq. (24) as follows: 

𝐺1[𝑢(𝑥, 𝑡)](𝑟) = ∑
𝑙𝑛(𝑥)

(𝑛𝛼 + 1)𝑟𝑛𝛼

∞

𝑛=0

 ,                                                                                    (25) 

𝐺2[𝑢(𝑥, 𝑡)](𝑟) = ∑
𝑙𝑛(𝑥)

𝑟𝑛𝛼+1

∞

𝑛=0

.                                                                                                (26) 

 And the 𝑗𝑡ℎ truncates the series of the expansions (25) and (26) are. 

𝐺1[𝑢(𝑥, 𝑡)]𝑗(𝑟) = ∑
𝑙𝑛(𝑥)

(𝑛𝛼 + 1)𝑟𝑛𝛼

𝑗

𝑛=0

 ,                                                                           (27) 

https://doi.org/10.54361/ajmas.258174


Alqalam Journal of Medical and Applied Sciences. 2025;8(3):1785-1794 

https://doi.org/10.54361/ajmas.258374  

 

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 

Received: 19-06-2025 - Accepted: 17-08-2025 - Published: 21-08-2025    1790 

𝐺2[𝑢(𝑥, 𝑡)]𝑗(𝑟) = ∑
𝑙𝑛(𝑥)

𝑟𝑛𝛼+1

𝑗

𝑛=0

.                                                                                        (28) 

By taking the limit as 𝑟 → ∞, after multiplying both side of Eq.(28) by r, we get.  

𝑙𝑖𝑚
𝑟→∞

𝑟 𝐺2[𝑢(𝑥, 𝑡)]𝑗(𝑟) = 𝑙0(𝑥) + 𝑙𝑖𝑚
𝑟→∞

∑
𝑙𝑛(𝑥)

𝑟𝑛𝛼+1

𝑗

𝑛=1

 . 

Using the fact. 

𝑙𝑖𝑚
𝑟→∞

𝑟 𝐺2[𝑢(𝑥, 𝑡)]𝑗(𝑟) = 𝑢(𝑥, 0) , 

And the initial condition in Eq.(21), we get. 

𝑙0(𝑥) = 𝑒𝑥 . 
Hence, from the series representations (8) and (9), we get.  

𝐺1[𝑢(𝑥, 𝑡)]𝑗(𝑟) = 𝑒𝑥 + ∑
𝑙𝑛(𝑥)

(𝑛𝛼 + 1)𝑟𝑛𝛼

𝑗

𝑛=1

 ,                                                                   (29) 

𝐺2[𝑢(𝑥, 𝑡)]𝑗(𝑟) =
𝑒𝑥

𝑟
+ ∑

𝑙𝑛(𝑥)

𝑟𝑛𝛼+1

𝑗

𝑛=1

 .                                                                                (30) 

The ARA-Residual function of Eq. (24) in now given by: 

𝐺2𝑅𝑒𝑠(𝑥, 𝑟) = 𝐺2[𝑢(𝑥, 𝑡)] −
𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)] +

𝛼 − 1

𝑟
𝑒𝑥 +

1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝜕

𝜕𝑥
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]

−
1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]
𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]

+
1

𝑟𝛼
𝐺2 [

𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]]]  ,                                                                                                                                    (31) 

And the 𝑗𝑡ℎARA-Residual function of Eq. (12) is.  

𝐺2𝑅𝑒𝑠𝑗(𝑥, 𝑟) = 𝐺2[𝑢(𝑥, 𝑡)]𝑗 −
𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)]𝑗 +

𝛼 − 1

𝑟
𝑒𝑥 +

1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]𝑗]
𝜕

𝜕𝑥
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]𝑗]]

−
1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]𝑗]
𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]𝑗]]

+
1

𝑟𝛼
𝐺2 [

𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]𝑗]].                                                                                                                             (32) 

To determent the first unknown coefficient 𝑙1(𝑥) in Eq. (29) and Eq. (30) we substituting  𝐺1[𝑢(𝑥, 𝑡)]1(𝑟) and 

𝐺2[𝑢(𝑥, 𝑡)]1(𝑟)  into  𝐺2𝑅𝑒𝑠1(𝑥, 𝑟) to obtain. 

𝐺2𝑅𝑒𝑠1(𝑥, 𝑟) = 𝐺2[𝑢(𝑥, 𝑡)]1 −
𝛼

𝑟
𝐺1[𝑢(𝑥, 𝑡)]1 +

𝛼 − 1

𝑟
𝑒𝑥 +

1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]1]
𝜕

𝜕𝑥
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]1]]

−
1

𝑟𝛼
𝐺2 [𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]1]
𝜕3

𝜕𝑥3
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]1]] +
1

𝑟𝛼
𝐺2 [

𝜕5

𝜕𝑥5
𝐺2

−1[𝐺2[𝑢(𝑥, 𝑡)]1]].                               (33) 

  Substitute  

𝐺1[𝑢(𝑥, 𝑡)]1 = 𝑙0(𝑥) +
𝑙1(𝑥)

(𝛼 + 1)𝑟𝛼+1
 , 

And  

𝐺2[𝑢(𝑥, 𝑡)]1 =
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
 . 

In Eq. (33) after simple computations, we have. 

𝐺2𝑅𝑒𝑠1(𝑥, 𝑟) = (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
) −

𝛼

𝑟
(𝑙0(𝑥) +

𝑙1(𝑥)

(𝛼 + 1)𝑟𝛼+1
) +

𝛼 − 1

𝑟
𝑒𝑥 +

1

𝑟𝛼
𝐺2 [𝐺2

−1 (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
)

𝜕

𝜕𝑥
𝐺2

−1 (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
)]

−
1

𝑟𝛼
𝐺2 [𝐺2

−1 (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
)

𝜕3

𝜕𝑥3
𝐺2

−1 (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
)] +

1

𝑟𝛼
𝐺2 [

𝜕5

𝜕𝑥5
𝐺2

−1 (
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
)].                  (34) 

 
Thus,  

𝐺2𝑅𝑒𝑠1(𝑥, 𝑟) =
𝑙1(𝑥)

(𝛼 + 1)𝑟𝛼+1
+

𝑙0(𝑥)𝑙0

‵
(𝑥)

𝑟𝛼+2
+

𝑙0(𝑥)𝑙1

‵
(𝑥)

𝑟2𝛼+2
+

𝑙1(𝑥)𝑙0

‵
(𝑥)

𝑟2𝛼+2
+

𝑙1(𝑥) 𝑙1

‵
(𝑥)

𝑟3𝛼+2
−

𝑙0(𝑥)𝑙0
(3)

(𝑥)

𝑟𝛼+2
−

𝑙0(𝑥)𝑙1
(3)

(𝑥)

𝑟2𝛼+2

+
𝑙1(𝑥)𝑙0

(3)
(𝑥)

𝑟2𝛼+1
+

𝑙1(𝑥)𝑙1
(3)

(𝑥)

𝑟3𝛼+2
+

𝑙0
(5)

(𝑥)

𝑟𝛼+1
+

𝑙1
(5)

(𝑥)

𝑟2𝛼+1
.                                                                                                      (35) 
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By taking the limit as 𝑟 → ∞, after multiplying Eq.(35) by 𝑟𝛼+1 ,  the fact  𝑙𝑖𝑚
𝑟→∞

( 𝑟𝛼+1𝐺2𝑅𝑒𝑠1(𝑟, 𝑥)) = 0 , yields that.  

𝑙1(𝑥) = (𝛼 + 1) 𝑙0
(5)

. 

 
Therefore,  

𝑙1(𝑥) = (𝛼 + 1) 𝑥5−𝛼𝑒𝑥 .                                                                                 (36) 
Similarly, to find 𝑙2(𝑥) , we Substitute  

𝐺1[𝑢(𝑥, 𝑡)]2(𝑟) = 𝑙0(𝑥) +
𝑙1(𝑥)

(𝛼 + 1)𝑟𝛼
+

𝑙2(𝑥)

(2𝛼 + 1)𝑟2𝛼
 ,                                               (37) 

And  

𝐺2[𝑢(𝑥, 𝑡)]2(𝑟) =
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
+

𝑙2(𝑥)

𝑟2𝛼+1
                                                                      (38) 

Into  𝐺2𝑅𝑒𝑠2(𝑥, 𝑟) and solve the equation 𝑙𝑖𝑚
𝑟→∞

𝑟2𝛼+1𝐺2𝑅𝑒𝑠2(𝑥, 𝑟) = 0. 

To get: 

𝐺2𝑅𝑒𝑠2(𝑥, 𝑟) = [
𝑙0(𝑥)

𝑟
+

𝑙1(𝑥)

𝑟𝛼+1
+

𝑙2(𝑥) 

𝑟2𝛼+1
] −

𝛼

𝑟
[𝑙0(𝑥) +

𝑙1(𝑥)

(𝛼 + 1)𝑟𝛼
+

𝑙2(𝑥)

(2𝛼 + 1)𝑟2𝛼
] + [

𝛼 − 1

𝑟
𝑒𝑥]

+ [
𝑙0(𝑥)

𝑟𝛼+1
+

𝑙1(𝑥)

𝑟2𝛼+1
+

𝑙2(𝑥)

𝑟3𝛼+1
] [

𝑙0

‵
(𝑥)

𝑟
+

𝑙1

‵
(𝑥)

𝑟𝛼+1
+

𝑙2

‵
(𝑥)

𝑟2𝛼+1
] − [

𝑙0(𝑥)

𝑟𝛼+1
+

𝑙1(𝑥)

𝑟2𝛼+1
+

𝑙2(𝑥)

𝑟3𝛼+1
] [

𝑙0
(3)

(𝑥)

𝑟
+

𝑙1
(3)

(𝑥)

𝑟𝛼+1
+

𝑙2
(3)

(𝑥)

𝑟2𝛼+1
]

+ [
𝑙0

(5)
(𝑥)

𝑟
+

𝑙1
(5)

(𝑥)

𝑟𝛼+1
+

𝑙2
(5)

(𝑥)

𝑟2𝛼+1
].                                                                                                                                         (39) 

Upon multiplying Eq. (39) by 𝑟2𝛼+1, and letting r tend to zero, it follows that:  
 

𝑙2(𝑥) =
2𝛼 + 1

𝛼 + 1
 𝑙1

(5)
(𝑥).                                                                                                         (40) 

By using conformable definition: 

𝑙2(𝑥) = (2𝛼 + 1)[[(5 − 𝛼)! 𝑥5−2𝛼 𝑒𝑥] + 5[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)(2 − 𝛼)𝑥6−2𝛼 𝑒𝑥 ] + 10[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)𝑥7−2𝛼  𝑒𝑥]

+ 11[(5 − 𝛼)(4 − 𝛼)𝑥8−2𝛼 𝑒𝑥] + 6[(5 − 𝛼)𝑥9−2𝛼 𝑒𝑥]].                                                                                            (41) 
 
Repeating the same arguments as before, we get the solution of Eq.(23) as:  

𝐺2[𝑢(𝑥, 𝑡)] =
𝑒𝑥

𝑟
+

𝛼 + 1

𝑟𝛼+1
 𝑥5−𝛼 𝑒𝑥

+
(2𝛼 + 1)

𝑟2𝛼+1
[[[(5 − 𝛼)! 𝑥5−2𝛼 𝑒𝑥] + 5[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)(2 − 𝛼)𝑥6−2𝛼  𝑒𝑥 ]

+ 10[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)𝑥7−2𝛼 𝑒𝑥] + 11[(5 − 𝛼)(4 − 𝛼)𝑥8−2𝛼 𝑒𝑥] + 6[(5 − 𝛼)𝑥9−2𝛼 𝑒𝑥]].     ] .       (42)  

Applying the inverse ARAT on Eq. (42), the solution of problems (20) and (21) is obtained as follows: 

 

𝑢(𝑥, 𝑡) = 𝑒𝑥 +
𝛼 + 1

𝛤(𝛼 + 1)
 𝑡𝛼 𝑥5−𝛼 𝑒𝑥

+
2𝛼 + 1

𝛤(2𝛼 + 1)
 𝑡2𝛼+1  [[[(5 − 𝛼)! 𝑥5−2𝛼 𝑒𝑥] + 5[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)(2 − 𝛼)𝑥6−2𝛼 𝑒𝑥  ]

+ 10[(5 − 𝛼)(4 − 𝛼)(3 − 𝛼)𝑥7−2𝛼 𝑒𝑥] + 11[(5 − 𝛼)(4 − 𝛼)𝑥8−2𝛼 𝑒𝑥] + 6[(5 − 𝛼)𝑥9−2𝛼 𝑒𝑥]] ] + ⋯  (43) 

 

Results and Discussion 

The ARA- RPSM solution u(𝑥,𝑡) is illustrated in Figure 2, for 0 ≤ 𝑥 ≤10 and 0 ≤ 𝑡 ≤ 1 when 𝛼 =0.2, 𝛼 =0.5, 𝛼 = 

0.8, 𝛼=1. When 𝛼=1 is chosen among the different values of 𝛼, the u(𝑥,𝑡) is closest to the exact solution as in 

Figure 1. Here, we observe that the ARA-RPSM solution converges rapidly with increasing order of 

approximation. Furthermore, from (figures 1and 2), it is evident that the RPS results are nearly identical to 
the numerical results. The results are very consistent with the increasing time. Three-dimensional surface 

graphs are used to illustrate the dynamical behavior of the earned results. Through graphical illustrations, 

it can be noticed that various forms of traveling wave structures are obtained for the time fractional nonlinear 

fKdV using the ARA residual power series method method. 

In this study, the ARA-RPSMARA-RPSMARA-RPSM was utilized to gain an approximate solution of the time 

fractional fKdV equation. In the reliability of the proposed method for the time fractional fKdV equation had 
emerged. Besides, the third ARA-RPS solutions were demonstrated by 3D graphs. It could be seen in Figure 

2. All graphics were shown by the help of MATLAB. In addition, it was seen that ARA-RPSMARA-RPSM 

achieved a high accuracy when the numerical results were analyzed in this paper. 
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Figure1. Three-dimensional surface graph of the exact solution of 𝒖(𝒙, 𝒕) when 𝟎 ≤ 𝒙 ≤ 𝟏𝟎, 𝟎 ≤ 𝒕 ≤ 𝟏,   

𝜶 =  𝟏. 

 
 

  
 

Figure1. Three-dimensional surface graphs of 𝒖𝟑(𝒙, 𝒕) when 𝟎 ≤ 𝒙 ≤ 𝟏𝟎, 𝟎 ≤ 𝒕 ≤ 𝟏, 𝜶 = 𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟖 , 𝟏. 
 

Conclusion 
In this study, the ARA residual power series method was introduced to obtain an approximate analytical 

solution for time-fractional Korteveg de Vries (KdV) in a conformable sense. Numerical results and 

comparison with the exact solution show that the present method is a very powerful and reliable technique 
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and producing highly approximate results. Compared to other techniques, the method is very simple to 

apply without linearization, perturbation, or discretization or any transformations. Also, it is a good tool to 

use to calculate the approximate solutions of a wide range of fractional partial differential equations. 
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