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Abstract 
In this article, we provide a summary of recent advancements concerning the influence of plasma on 
gravitational lensing effects. The bending of light due to gravity and plasma results from a complex 
interplay of different physical factors: gravity, dispersion, and refraction.  In a non-uniform plasma, 
chromatic refraction also occurs. We explore chromatic effects in strong gravitational lensing 
configurations, focusing on the variation in the angular position of the images. Furthermore, we 
analyse the higher-order images that emerge when lensing occurs around a black hole embedded in 
a uniform plasma. In this work, we analytically study the time delay for strong gravitational lensing 

in plasma, including contributions from geometric delay along a bent trajectory in both gravity and 
plasma, it is conceivable that the ray may be subject to a delay within the gravitational field of the 
lens, in addition to a dispersion delay that is triggered by the deceleration of light in the medium. In 
this paper, an expression for the deflection angle is derived in a non-Schwarzschild space-time in the 
weak field regime in the presence of a plasma. It is demonstrated that this expression depends on 

the frequency of electromagnetic waves, the gravitational mass 𝑀, and the deformation parameter 𝜖. 
Keywords. Plasma; Gravitational Lensing; Time Delay; Non-Schwarzschild Gravitating Object. 

 

Introduction 
The theory of gravitational lensing describes a wide range of phenomena connected with the deflection of 

light by gravity. These effects include a change in the apparent angular position of the source, multiple 

imaging, magnification (change in flux), distortion (change in shape) and time delay. Gravitational lensing 
is currently a powerful astrophysical tool for investigating distant objects, the distribution of dark matter, 

large-scale structures, the cosmic microwave background, the discovery of planets and the testing of general 

relativity. In the present paper, we discuss how the presence of plasma may influence the various effects of 

gravitational lensing. The most straightforward approach to incorporating plasma into the gravitational 

lensing problem is to consider scenarios where both deflection angles, attributable to gravity and to 

refraction in the plasma, are negligible. These angles can then be calculated independently from one another. 
In order to calculate the gravitational angle of deflection, it is sufficient to utilise the linearised theory of 

gravitation, that is to say, the approximate Einstein formula for the deflection angle. In order to calculate 

the refraction, it is possible to assume that the refractive index of the plasma differs only slightly from unity 

(i.e. that it is approximately equal to vacuum) [1]. 

Since the 1960s, researchers have studied how gravity and refraction interact in the context of the 
propagation of radio signals in the solar corona. The phenomenon of light deflection, observed when rays of 

light pass in proximity to the Sun, is attributed to the combined effects of solar gravity and the presence of 

plasma in the solar corona. In this instance, the deflection resulting from refraction is chromatic in nature, 

implying that it is contingent on the frequency of the photon.  

In strong lens systems with multiple images, the time delay between images is subject to variation, with 

different images exhibiting distinct delays. The measurement of these delays is a fundamental aspect of the 
analysis. The observation of the time delay has been proven to be a reliable method for determining the 

Hubble constant. In the event of the gravitational lens being surrounded by non-homogeneous plasma, 

chromatic refraction occurs in addition to the vacuum gravitational deflection. Consequently, a variety of 

chromatic effects may be observed. As outlined in the subsequent section, this is anticipated. Furthermore, 

it has been established that the speed of signal propagation is reduced relative to the vacuum. This 
phenomenon is exemplified by the measured time delay of the signal at varying radio frequencies from 

pulsars in the interstellar medium [2,3].  

The non-Schwarzschild spacetime has been introduced, wherein two large classes of alternative theories 

were studied, modifying the action through algebraic, quadratic curvature invariants coupled to scalar fields. 

The investigation of astrophysical phenomena in the vicinity of deformed compact gravitational objects could 

provide a valuable opportunity for constraining the allowed parameter space of solutions. In addition to 
providing a deeper insight into the physical nature and properties of the corresponding spacetime metric, 

such studies could also yield novel scientific insights [4]. A part of the principal aim of this study is to 

investigate the weak gravitational lensing of a non-Schwarzschild compact object by a homogeneous plasma, 

and to determine the effect of the plasma's deformation parameter on the deflection angle in the weak field 

regime. 
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Methods 

Refraction in Inhomogeneous Media: Light has Curved Trajectories in Space 
The theory of gravitational lensing accounts for a variety of effects associated with light being deflected by 

gravity: apparent angular position shift, multiple imaging, flux magnification (change in the amount of the 

flux), shape distortion (change of the form), and time delay. 

  

Strong Gravitational Lensing: Implications of Weak Deflection Approximation 
The most spectacular manifestation of gravitational lensing is multiple images of the same source; we will 

demonstrate how it works for the simplest case of a point-mass lens. For a strong lens system, the 

distribution of matter in the lens is more complex than a point mass and must have essential deviations 

from spherical symmetry (or any other kind of symmetry), but each small patch of matter still deflects light 

according to the approximate Einstein formula. 

 
Gravitational Lensing Effects: Primary and High-Order Image Schemes 

As the photons approach the black hole, photons with impact parameters greater than a critical value are 

predicted to return to infinity, thus confirming the theoretical predictions of general relativity. 

 

Einstein Rings and Relativistic Rings: Explained Through Gravitational Lensing 
The strong deflection limit ensures a high degree of accuracy for photons that have undergone one or more 

turns, thus facilitating the calculation of the properties of relativistic images and Einstein rings. In 

particular, it has been demonstrated that for any spherically symmetrical space-time, the deflection angle 

exhibits a logarithmic divergence as the impact parameter approaches its critical value. 

 

The Interplay of Gravity and Plasma in Weak Deflection Scenarios in the Schwarzschild Metric 
In the following section, an attempt is made to calculate the photon deflection angle in circumstances 

involving both gravitation and plasma. 

 

Weak Deflection in Homogeneous Plasma: Analytical Approach 

For a homogeneous plasma where 𝜔𝑒𝑝
2  is a constant, the refractive index is found to be space coordinate-

independent, resulting in the absence of refractive action. Therefore, in the case of homogeneity, the angle 

𝛼̂𝑑𝑒𝑓 may be considered as the gravitational deflection in a given medium (plasma). Notwithstanding the 

absence of deflection resulting from refraction, this deflection deviates from vacuum gravitational deflection. 

 
Weak Deflection in Non-Homogeneous Plasma: Analytical Approach 

In the event of plasma non-homogeneity, the refractive deflection  𝛼𝑟𝑒𝑓𝑟, must also be considered. The 

methodology for gravitational lensing in plasma, as developed in [1, 2], facilitates the concurrent 

consideration of two effects:    
(i) The gravitational deflection observed in a plasma deviate from the theoretical Einstein angle. 

(ii) Refraction is observed to be connected with plasma inhomogeneity, a phenomenon which is independent 

of gravity. 

 

The Interplay of Gravity and Plasma in Strong Lens Scenarios  
Chromatic gravitational lensing is invariably caused by the presence of plasma. In a plasma where all the 

particles have the same properties, the colour effects are caused by the different gravitational deflection. An 

additional chromatic refractive deflection occurs in the case of a non-homogeneous plasma. 

 

Plasma's Role in Shifts of Angular Position in Lensing 

For a strong lens system, the weak deflection approximation is sufficient. For a homogeneous plasma and a 
point-mass lens, formula (7) can be used. If it is also assumed that the plasma frequency is much smaller 

than the photon frequency, formula (8) can be used. Formula (14) is all that's needed for a non-homogeneous 

plasma and a point-mass lens. 

  

Time Delay Analysis in Simultaneous presence of Gravity-Plasma Scenarios: analytical approach 
An investigation into the time delay in the case of gravitational lensing in plasma is conducted, with a 

particular focus on strong lens systems. It is approached analytically, leading to the identification of compact 

expressions for plasma corrections, which are instrumental in the estimation process. The terms 'strong 

lens system' and 'strong lensing' are employed to denote an observational situation in which a gravitational 

lens produces multiple images. 

 
Plasma's Influence on Black Hole Lensing: A Detailed Analysis 

The Schwarzschild black hole is considered, with a discussion of the influence of plasma on the positions 

and magnifications of high-order (relativistic) images. The calculation of the angle of deflection of a weak 

photon can be achieved through the use of Einstein's formula. 
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The Interplay of Plasma and Non-Schwarzschild Lensing Effects: Angle of Deflection in 

Asymptotic Flatness 

The principal aim of this section is also to undertake a detailed investigation into the weak gravitational 
lensing of a compact object by a non-Schwarzschild nature, in the presence of a homogeneous plasma. The 

investigation will ascertain the impact of the plasma on the deformation parameter and its subsequent effect 

on the deflection angle, within the weak field limit. 

 

Results and Discussion 

Refraction in Inhomogeneous Media: Light has Curved Trajectories in Space 

In outer space, the propagation of light rays through plasma has been observed. In plasma, photons are 

subject to a variety of effects, including absorption, scattering and refraction. In the context of gravitational 

lensing, which is typically employed within the framework of geometric optics, the primary focus lies in the 

modification of the angle of deflection of a light ray. It is reasonable to hypothesise that chromatic effects 
will also arise due to the dispersion properties of plasma. 

It is widely acknowledged that light rays propagate along curved trajectories in a transparent and 

inhomogeneous medium [3,4]. This phenomenon is known as refraction and is a well-known occurrence in 

everyday life. As a case in point, the refractive effect causes the image to deviate from its true form when 

observed through the optical lens. A spoon appears to be fractured when placed in a glass of water, and the 
depth of the pond appears to be less than it actually is in reality. It is evident from (Figure 1) that the bending 

of light rays due to refraction is unrelated to relativity or gravity and occurs only if the medium is optically 

non-homogeneous. 

 

 
 

Figure 1. Exhibits effects analogous to those of gravitational lensing, yet these effects are 
attributed to the non-homogeneity of the medium. 

 

Strong Gravitational Lensing: Implications of Weak Deflection Approximation 

At the current level of observational development, chromatic effects resulting from lensing in a plasma may 

only be observed in a strong lens system. It is anticipated that the observation of images in different 

wavelengths will yield distinct angular positions, a phenomenon attributable to the presence of plasma. By 
measuring the difference in angular positions, we can obtain information about the distribution of the 

plasma in the lens. As illustrated in (Figure 2), the image on the left provides a visual representation of the 

positions of the images observed from the observer's perspective. The Einstein ring is denoted by a dashed 

circle. 
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Figure 2. Gravitational lensing in a vacuum can result in the formation of multiple images of the 

source. 

 

Gravitational Lensing Effects: Primary and High-Order Image Schemes 
In gravitational lensing on a black hole, two distinct images of the source are initially formed. The first and 

the second images are ordinary and are formed by photons with a frequency greater than 2𝜋. In addition to 

these images, two infinite sequences of high-order images are formed. They are formed by photons with a 

frequency greater than 2𝜋.  The Schwarzschild metric is what determines the trajectory of light rays. The 

light ray from the source is deflected by the point-mass gravitational lens and subsequently arrives at the 

observer. The image perceived by the observer is positioned at an angular distance, designated as 𝜃, from 

the actual source position. The concept of 𝑅 is defined as the closest point of the trajectory to the gravitating 

centre. This point is commonly referred to as the distance of closest approach. The parameter 𝑏 is known as 

the impact parameter of the photon (see Figure 3). 

 
 

Figure 3. Illustrates the formation of primary (right) and high-order (lift) images of the source in 
the context of gravitational lensing by a black hole in a vacuum. 

 

Einstein Rings and Relativistic Rings: Explained Through Gravitational Lensing 

It is evident that the calculation of relativistic images can be achieved by employing the exact deflection 

angle in the lens equation. It has been demonstrated that this function possesses a form of the integral, and 
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can be expressed via an elliptic integral [5,6]. The investigation of relativistic images is facilitated by the 

utilisation of the so-called strong deflection approximation, which is the antithesis of the weak deflection 

approximation. Relativistic rings (see Figure 4) were the subject of detailed investigation in work [6]. As the 
impact parameter approaches the critical value, the deflection angle logarithmically diverges. As indicated 

in the work of Darwin [5,7]. The logarithmically divergent expression for the photon deflection angle in a 

vacuum in the strong deflection limit was obtained for the Schwarzschild metric.  

  
Figure 4. The phenomenon of Einstein rings, as well as relativistic rings, is attributable to the 

occurrence of black hole lensing. 

 

The Interplay of Gravity and Plasma in Weak Deflection Scenarios in the Schwarzschild Metric 

The following hypothesis is put forward for consideration: What would happen if the closest approach 
distance were much larger than the Schwarzschild radius? It means: 

𝑅 ≫ 𝑀(𝑅𝑠 = 2𝑀) 
 

Weak Deflection in Homogeneous Plasma: Analytical Approach 

It is also important to note that, during the motion, the r-coordinate changes from 𝑅 to infinity, i.e. 𝑟 ≫  𝑀, 

and the resulting deflection angle is small, i.e. 𝛼 ̂𝑑𝑒𝑓 ≪ 1. The deflection angle can be expressed as follows: 

 

𝛼 ̂𝑑𝑒𝑓 = −𝜋 + 2 ∫ (𝑟√1 −
2𝑀

𝑟
)

−1

 (√
ℎ2(𝑟)

ℎ2(𝑅)
− 1)

−1

𝑑𝑟
∞

𝑅
                                 (1) 

 

ℎ(𝑟) = 𝑟 (
1

1−2𝑀/𝑟
−

𝜔𝑒𝑝
2

𝜔2 )
1/2

                                                                    (2) 

 

Considering the case with 𝜔𝑒𝑝
2 = const. We denote  𝜔𝑒𝑝

2 / 𝜔2 = 𝐹, using that 𝑅 ≫ 𝑀 and r ≫ 𝑀. substituting for 

ℎ(𝑟) and ℎ(𝑅) in eq. 2 into eq. 1. We obtain 

 
ℎ2(𝑟)

ℎ2(𝑅)
≅ 𝑅 [

𝑀

1−𝐹
   

(𝑟−𝑅)𝑟

(𝑟2−𝑅2)𝑅
+ 1] (𝑟2 − 𝑅2)−1/2                                               (3) 
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and 

 
1

𝑟
(1 −

2𝑀

𝑟
)

−1/2

 ≅
1

𝑟
(1 +

𝑀

𝑟
)                                                               (4) 

We get 

 

 

𝛼 ̂𝑑𝑒𝑓 = 2𝑀𝑅−1 (
1

1−𝐹
+ 1)                                                                  (5) 

Or, in ordinary units, 

𝛼 ̂𝑑𝑒𝑓 =
𝑅𝑠

𝑅
(

1

1−𝐹
+ 1),          𝑅𝑠 =

2𝐺𝑀

𝑐2 ,     𝐹 =  𝜔𝑒𝑝
2/𝜔0

2                             (6) 

We need to know how angles depend on the impact parameter, b. In the approximation 𝑅 ≫ 𝑀, the 

difference between 𝑅 and 𝑏 is negligible, so we can substitute 𝑅 ≅  𝑏 into (5) to obtain: 

𝛼 ̂𝑑𝑒𝑓 =
2𝑀

𝑏
(

1

1 − 𝐹
+ 1)                                                                       (7) 

 

It is evident that formula (7) is only applicable when  𝜔0 > 𝜔𝑒𝑝, due to the fact that waves with 𝜔0 < 𝜔𝑒𝑝 do 

not propagate within a plasma. As the gravitational deflection in plasma is known to be significantly larger 

than in a vacuum, it is imperative to consider the conditions for this to occur. 

 

𝛼 ̂𝑑𝑒𝑓 = 𝛼𝑣𝑎𝑐𝑢 + 𝛼𝑐𝑜𝑟𝑟 =
2𝑅𝑠

𝑏
(1 +

𝜔𝑒𝑝
2

2𝜔0
2)                                                 (8) 

 

(𝛼𝑣𝑎𝑐𝑢 =
2𝑅𝑠

𝑏
), is the vacuum gravitational deflection and (𝛼𝑐𝑜𝑟𝑟 =

𝑅𝑠

𝑏

𝜔𝑒𝑝
2

𝜔0
2), is an additional correction to the 

gravitational deflection connected with the plasma presence. 

 

Weak Deflection in Non-Homogeneous Plasma: Analytical approach 

Expanding the exact integral Formula (8) with 𝑀/𝑟 ≪ 1 and  𝜔𝑒𝑝
2 (𝑟)/𝜔0

2 ≪ 1We obtain an approximate formula 

for the case of a weak deflection in a non-homogeneous plasma     

                                                         

𝛼𝑅𝑒𝑓𝑟 = 𝑅 ∫ (𝑟2 − 𝑅2)−1/2 𝑑𝐹

𝑑𝑟
𝑑𝑟

∞

𝑅
,   𝐹 = 𝜔𝑒𝑝

2 /𝜔0
2                                   (9) 

 

=
𝑅𝐾𝑒𝑝

𝜔2  ∫ (𝑟2 − 𝑅2)−1/2∞

𝑅

𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟,      𝐾𝑒𝑝 ≡

4𝜋

𝑚
𝑒2                                     (10) 

 

For gravitational lensing, the dependence of angles on the impact parameter 𝑏 is needed. In papers [1,2], we 

have derived 𝛼̂𝑅𝑒𝑓 using Cartesian coordinates. We have considered the photon with the unperturbed 

trajectory as a straight line parallel to the z-axis, with the impact parameter 𝑏 ≅ 𝑅 ≫ 𝑀. In this case, we 

have, at a given  𝑏: 

 
𝜕𝑁

𝜕𝑏
=

𝑑𝑁

𝑑𝑟

𝜕𝑟

𝜕𝑏
=

𝑑𝑁

𝐷𝑟

𝑏

𝑟
                                                                           (11) 

Integral with respect to 𝑟    →    integral with respect to 𝑧, at 𝑏 const. 

 

𝑑𝑟 = 𝑑(𝑏2 − 𝑧2)1/2 =
𝑧

𝑟
𝑑𝑧                                                               (12) 

Changing 𝑅 →  𝑏, (𝑅 = 𝑏) 

𝑧 = (𝑟2 − 𝑅2)1/2 ,    
𝑑𝑁

𝑑𝑟
=

𝑟

𝑏

𝜕𝑁

𝜕𝑏
,   𝑑𝑟 =

𝑧

𝑟
𝑑𝑧                                           (13) 

 

𝛼𝑟𝑒𝑓𝑟 =
𝑏𝐾𝑒𝑝

𝜔0
2   ∫

1

𝑧

𝑟

𝑏

𝜕𝑁

𝜕𝑏

∞

0

𝑧

𝑟
 𝑑𝑧 =

𝐾𝑒𝑝

𝜔0
2   ∫

𝜕𝑁

𝜕𝑏

∞

0
 𝑑𝑧                               (14) 

We have, 

𝛼̂𝑅𝑒𝑓 = 𝛼𝑉𝑎𝑐𝑢 + 𝛼𝑟𝑒𝑓𝑟                                                          (15) 

𝛼̂𝑅𝑒𝑓 =
2𝑅𝑠

𝑏
 +

𝐾𝑒𝑝

𝜔0
2   ∫

𝜕𝑁

𝜕𝑏

∞

0
 𝑑𝑧                                                              (16) 

 

The presence of homogeneous or non-homogeneous plasma has been demonstrated to increase the 
gravitational deflection of photons.  It is generally accepted that a vacuum gravitational deflection is positive 

(𝛼𝑉𝑎𝑐𝑢 > 0). Consequently, the additional correction to gravitational deflection resulting from the presence of 

plasma is also positive (𝛼𝑐𝑜𝑟𝑟 > 0).  It is evident that the density of plasma typically decreases with radius 

across different models (𝑑𝑁/𝑑𝑟 <  0). Consequently, the refractive deflection is generally opposite to the 

gravitational deflection. The correction due to refractive deflection is negative (𝛼𝑅𝑒𝑓𝑟 < 0), as can be seen in 

[2]. 
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The Interplay of Gravity and Plasma in Strong Lens Scenarios  

The observational effects of frequency dependence can be explained by referring to the Schwarzschild point-

mass lens [1,2]. In order to ascertain the discrepancy in the angular position of images, a comparison of 
radio and optical observations of images is required. 

 

Plasma's Role in Shifts of Angular Position in Lensing 

When it comes to optical frequencies, the impact of plasma is found to be negligible. Consequently, the 

calculation of image positions can be performed utilising vacuum formulae (See figure 5). 

 
Figure 5. Shows a schematic comparison of lensing by point mass in plasma (middle and right) 

and in vacuum (left) 
 

With regard to the theory of refractive plasma deflection, the authors have taken into consideration two 

models of plasma. The initial object under consideration is a spiral galaxy characterised by a high 

concentration of plasma. 

 

𝑁(𝑟) = 𝑁0𝑒−𝑟/𝑟0                                                                                    (17) 

 

The radius r is measured from the centre of the galaxy. The constants are 𝑁0 = 10cm−3 and 𝑟0 = 10kpc. The 

second plasma model is used for elliptical galaxies: 

𝑁(𝑟) = 𝑁0 (
𝑟

𝑟0
)

−1.25

                                                                               (18) 

 

with 𝑁0 = 0.1 cm−3 and 𝑟0 = 10kpc. These values of 𝑁0 correspond to the plasma frequency we  𝜔𝑒𝑝 ≅

1.8 × 105 sec−1 and 1.8 × 104 sec−1. 

 

 
 
 
 
Time Delay Analysis in Simultaneous Presence of Gravity-Plasma. 
In this section, the time delay in the presence of both a gravitational lens and plasma will be considered. 

The total deflection of a light ray is expressed as the aggregate of two constituent components: namely, 

vacuum gravitational deflection and refractive plasma deflection. 
 

𝛼̂𝑑𝑒𝑓 = 𝛼̂𝑔𝑟𝑎 + 𝛼̂𝑟𝑒𝑓  ;     𝛼̂𝑔𝑟𝑎 , 𝛼̂𝑟𝑒𝑓 ≪ 1                                                       (19) 

 

It is hypothesised that both angles are negligible and independent of each other. The effects of gravity and 

plasma are considered in linear order; all other mixed and higher-order terms are neglected in this 
instance. In accordance with the aforementioned approximations, the following contributions to time delay 

are considered, in comparison with straight-line propagation in a vacuum in the absence of gravity: 

(i) the geometric delay ∆𝑡𝐺𝐸𝑂𝑀  associated with additional path length due to the bending of the trajectory in 

the presence of both gravity and plasma; 

(ii) the potential delay ∆𝑡𝑃𝑂𝑇 of the ray caused by the time retardation of the ray while moving in the 

gravitational field of the lens; 

(iii) the dispersion delay ∆𝑡𝐷𝐼𝑆𝑃  in the plasma associated with a decrease in the signal velocity in the medium. 
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Figure 6.  The standard pattern of gravitational lensing: The way light travels from a distant 

source at an angle (β), as seen by the observer. The lens deflects the light at an angle (𝜶̂), creating 

an observation angle (φ). 

 

The assumption is made that both the lens and the surrounding plasma exhibit spherical symmetry. 

Consequently, one-dimensional variables can be employed in the lens equation and the time delay 
expressions. It should be noted that, in the general case, the positions of the source and images are described 

by two-dimensional quantities in the source plane and lens plane, respectively. Nevertheless, in the case of 

axially symmetric scenarios, it is feasible to transition to one-dimensional values in the lens equation. This 

will subsequently be delineated in the plane where all rays forming images are situated (see Figure 6). The 

geometrical delay [8, 9] is defined as follows: 
 

∆𝑡𝐺𝐸𝑂𝑀  (φ) =
zd+1

c

DdDs

Dds
 
(φ−β)2

2
                          (20) 

 

where 𝛽 is the angular position of the source, whereas 𝜑 is the position of the image. Additionally, 𝑧𝑑 denotes 

the redshift of the lens, and 𝐷𝑗  represent angular diameter distances, as illustrated in (Figure 6). The form 

of expression (20) is universally applicable, in the sense that it can be used for deflection caused by any 

physical reason. Its utilisation extends beyond the domain of vacuum gravitational lensing, encompassing 

applications in plasma lensing as well [10,11]. The significance of geometric delay in comparison with 

potential delay was addressed in [12.13]. Similarly, the potential delay [14-16]: 

 

∆𝑡𝑃𝑂𝑇  (𝜑) =
𝑧𝑑+1

𝑐

𝐷𝑑𝐷𝑠

𝐷𝑑𝑠
 ѱ(𝜑) + C                        (21) 

 

ѱ(𝜑), is to be understood as the deflection potential [17-19], the definition of which is such that the 

gradient of this potential is equal to the deflection angle. The potential is dependent upon the mass 

distribution in the lens. 
 

𝛼 = ∆ѱ,    𝛼 =
𝐷𝑑𝑠

𝐷𝑠
𝛼̂𝑑𝑒𝑓                                     (22) 

 

In this investigation, the dispersive delay is analysed in cold, non-magnetised plasma with a refractive 

index of n: 

 

𝑛 = √1 −
𝜔𝑒𝑝

2

𝜔2  ,        𝜔𝑒𝑝
2 =

4𝜋𝑒2

𝑚𝑒
𝑁𝑒                        (23) 

 

In this equation, 𝜔𝑒𝑝
2  denotes the plasma electron frequency, 𝜔 signifies the photon frequency (as measured 

locally), 𝑚𝑒 and 𝑒 represent the electron mass and charge, respectively, and 𝑁𝑒 designates the electron 

number density in the plasma. In the linearised approximation, with gravitational and plasma terms treated 
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separately, the change in the frequency of photons due to the gravitational field (i.e. gravitational redshift) 

can be neglected in terms containing plasma. It is imperative to note that this cannot be neglected if greater 

precision is required in the calculation of plasma effects, for instance, when determining corrections to the 
vacuum gravitational deflection due to the presence of a homogeneous plasma [20,21], or in the case of 

black hole shadow determination [22-24]. 

 

𝑛2 ≈ 1 −
𝜔𝑒𝑝

2

2𝜔2  = 1 −
2𝜋𝑒2

𝑚𝑒𝜔2 𝑁𝑒                                                                 (24) 

and for the delay of a ray in a plasma compared to its propagation in a vacuum, we write: 

 

∆𝑡 =
1

𝑐
∫ (

1

𝑛
− 1) 𝑑𝑙 =

2𝜋𝑒2

𝑚𝑒𝜔2𝑐
𝑁𝑖𝑛𝑡𝑒𝑛  ,      𝑁𝑖𝑛𝑡𝑒𝑛 = ∫ 𝑁𝑒𝑑𝑙                                (25) 

 

In this particular instance, 𝑁𝑖𝑛𝑡𝑒𝑛 denotes the projected electron density along the line of sight, which is more 

commonly referred to as the dispersion measure (DM). When combined with the cosmological factor, the 

following equation is obtained: 

∆𝑡𝑑𝑖𝑠𝑝 =
𝑧𝑑+1

𝑐

2𝜋𝑒2

𝑚𝑒𝜔2𝑐
𝑁𝑖𝑛𝑡                                                                       (26) 

 
as a result, the formula for the time delay becomes [16]: 

 

∆𝑡(𝜑) = [
(𝜑−𝛽)2

2
− ѱ(𝜑)]

𝐷𝑀

𝑐
+

𝑧𝑑+1

𝑐

𝐾𝑒𝑝

2𝜔2 𝑁𝑖𝑛𝑡([𝜑]), 𝐾𝑒𝑝 = 4𝜋𝑒2/𝑚𝑒                 (27) 

the variable    

𝐷𝑀 = (𝑧𝑑 + 1)
𝐷𝑑𝐷𝑠

𝐷𝑑𝑠
                                                                              (28) 

 

is known as the time-delay distance [18,19].  

It is important to note that formula (27) is general; any distribution of gravitating mass in the lens can be 

considered, thereby defining the function ѱ(𝜑)in conjunction with the deflection angle, according to equation 

(22).Moreover, any spherically symmetric distribution of surrounding plasma, given by 𝑁𝑒 and 𝑁𝑖𝑛𝑡𝑒𝑛([𝜑]), 
can be utilised. It is also observed that the dispersive term manifests itself in both homogeneous and non-

homogeneous plasmas. 

 

Plasma's Influence on Black Hole Lensing: A Detailed Analysis 

In Darwin's paper [5], it was demonstrated that an additional limiting situation for photons, characterised 
by multiple circumambulations around a central object, can be examined analytically. In this limit, known 

as the strong deflection limit, the deflection angle is expressed as [5,7]. 

 

 

             𝛼̂𝑑𝑒𝑓 = 2 ln[12(2 − √3)] −2 ln (
𝑅

𝑟𝑀
− 1) + − 𝜋 

= −2 ln
𝑅−3𝑀

36(2−√3)𝑀
− 𝜋 = −2 ln

(2+√3)(𝑅−3𝑀)

36𝑀
− 𝜋                                              (29) 

 

or, as a function of the impact parameter 𝑏 [61,62] 

          𝛼̂𝑑𝑒𝑓 = − ln (
𝑏

𝑏𝑐𝑟
− 1) + ln[216(7 − 4√3)] − 𝜋 

 

= − ln
𝑏−3√3𝑀

648√3(7−4√3)𝑀
− 𝜋 = −𝑙𝑛

(7+4√3)(𝑏−3√3𝑀)

648√3𝑀
− 𝜋                                          (30) 

 

The following discussion will address the impact of plasma presence on relativistic images. In a 
homogeneous plasma, the photon deflection angle, defined as the angle of deviation of a photon's trajectory 

from a linear path, is expressed as a function of the closest approach distance, 𝑅, and the ratio of 

frequencies, 𝜔𝑒𝑝
2 /𝜔0

2, as outlined in reference [25]. 

 

𝛼̂(𝑅, 𝑥) = −2√
1

2
(

𝑥+1 

𝑥
) 𝑙𝑛 [𝑧1(𝑥)

𝑅−𝑟𝑀

𝑟𝑀
] − 𝜋                                                        (31) 

where 

         𝑧1(𝑥) =
9𝑥−1+2√6𝑥(3𝑥−1)

48𝑥
 ,   𝑟𝑀 =

1+𝑥

1+3𝑥
(6𝑀)  ,        𝑥 = (1 −  

8

9
𝜔𝑒𝑝

2 /𝜔0
2)

1/2

            (32) 

 

The formula (31) is asymptotically exact and valid for 𝑅 close to 𝑟𝑀. It is imperative to acknowledge the 

significance of the critical (minimum) value of 𝑅, which is equivalent to 𝑟𝑀. 𝑟𝑀 is defined as the radius of the 

point at which the maximum of the effective potential is attained. It is evident that the deflection angle of a 
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photon approaches infinity as the radius 𝑅 approaches 𝑟𝑀. As a consequence, the photon undergoes an 

infinite number of rotations at the radius 𝑟𝑀.In the event that the condition 𝜔0 ≫ 𝜔𝑒𝑝 is met, it can be deduced 

that 𝑥 →  1, thus resulting 𝑟𝑀 =  3𝑀. This is analogous to the photon in the vacuum. The deflection angle is 

defined as a function of the impact parameter 𝑏 and the ratio of frequencies, expressed as: 𝜔𝑒𝑝
2 /𝜔0

2. 

 

𝛼̂(𝑏, 𝑥) = −√
1

2
(

𝑥+1 

𝑥
) ln [

𝑏−𝑏𝑐𝑟

𝑏𝑐𝑟

2𝑧1
2(𝑥)

3𝑥
 ] − 𝜋,   𝑤ℎ𝑒𝑟𝑒   𝑏𝑐𝑟 = √3 𝑟𝑀 (

1+𝑥

3𝑥−1
)

1/2

              (33) 

 

This formula is valid for 𝑏 close to 𝑏𝑐𝑟, where 𝑏𝑐𝑟 is a critical value of the impact parameter under the given 

 𝜔𝑒𝑝
2 /𝜔0

2. For we 𝜔0 ≫ 𝜔𝑒𝑝 we obtain the critical impact parameter for vacuum, 𝑏𝑐𝑟 = 3√3𝑀. For simplicity, 

let us rewrite Formula (33) as 

 

𝛼̂(𝑏, 𝑥) = −𝑎(𝑥)𝑙𝑛 (
𝑏−𝑏𝑐𝑟

𝑏𝑐𝑟
) + 𝑐(𝑥)                                                                 (34) 

where 𝑎(𝑥) and 𝑐(𝑥) are defined as 

𝑎(𝑥) = √
1

2
(

𝑥+1 

𝑥
)  ,      𝑐(𝑥) = −√

1

2
(

𝑥+1 

𝑥
) ln ( 

2

3 
 
𝑧1

2(𝑥)

𝑥
) − 𝜋                                   (35) 

solving the equation 
𝛼̂(𝑏, 𝑥) = 2𝜋𝑘 ,      𝑘 = 1,2, …  , 

 

For a relativistic imaging, the impact parameters 𝑏𝑘(𝑥) and the angular positions of the relativistic images 

𝜗𝑘(𝑥) can be expressed as follows: 

 

𝑏𝑘(𝑥) = 𝑏𝑐𝑟 = [1 + 𝑒𝑥𝑝 (
𝑐(𝑥)−2𝜋𝑘

𝑎(𝑥)
)] ,   𝜗𝑘(𝑥) =

𝑏𝑐𝑟

𝐷𝑑
 [1 + 𝑒𝑥𝑝 (

𝑐(𝑥)−2𝜋𝑘

𝑎(𝑥)
)]                                          (36) 

 

The distance between the observer and the lens, 𝐷𝑑, shall be considered. It is evident that the angular 

positions 𝜗𝑘 in plasma invariably exceed those in a vacuum. It can thus be concluded that the presence of 

homogeneous plasma leads to an increase in the angular separation of point relativistic images from the 

gravitating centre, or the angular size of the relativistic rings. The magnification of the relativistic images of 

a point source 𝜇𝑘  situated at an angular position 𝑏 from the line connecting the observer and the 

gravitational centre (lens) has been determined to be equal to [25]. 

𝜇𝑘 =
𝐷𝑠𝑏𝑐𝑟

2 (1+𝑙𝑘)

𝐷𝑑𝑠𝐷𝑑
2 𝑎(𝑥)𝛽

 ,      𝑙𝑘 = 𝑒𝑥𝑝 (
𝑐(𝑥)−2𝜋𝑘

𝑎(𝑥)
)                                         (37) 

 

It is evident that both 𝑎(𝑥) and 𝑐(𝑥) These are coefficients that have been defined in equation (34). In the 

expression (37), it can be observed that the variables 𝑏𝑐𝑟,𝑙𝑘, 𝑎(𝑥), 𝑐(𝑥) are contingent on 𝑥, thereby indicating 

a relationship between these variables and the ratio of the photon and the plasma frequencies. It has been 

established that the magnification 𝜇𝑘 of the relativistic images tends to infinity if the source angular position 

𝑏 →  0, as is the case in the vacuum [26]. As 𝜔0 approaches𝜔𝑒𝑝It is evident that 𝜇𝑘  experiences an unbounded 

increase. This phenomenon can be attributed to the fact that 𝑏𝑘  approaches infinity in this limit, as 

demonstrated in Equations (32) and (33) and illustrated in (see Figure 7). 

Although the presence of the plasma can significantly increase the magnification compared to the plasma-

free case, the magnifications remain very small because the vacuum values are very small. For example, for 

𝑀/𝐷𝑑 = 2.26467 × 10−11, which corresponds to the supermassive black hole at the centre of the Milky Way 

 𝐷𝑠/𝐷𝑑𝑠 = 2, 𝛽 = 1 𝜇𝑎𝑠These parameters have been taken from [27], the vacuum values of magnification are 

[25]. 
 

𝜇1
𝑉𝑎𝑐𝑢 = 0.716 × 10−11,   𝜇2

𝑉𝑎𝑐𝑢 = 0.134 × 10−13 ,       𝜇3
𝑉𝑎𝑐𝑢 = 0.249 × 10−16    

 
 

https://doi.org/10.54361/ajmas.258382


Alqalam Journal of Medical and Applied Sciences. 2025;8(3):1838-1851 

https://doi.org/10.54361/ajmas.258382  

 

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 
Received: 21-06-2025 - Accepted: 19-08-2025 - Published: 26-08-2025    1848 

- 

Figure 7. A comparison of the magnification factors of relativistic images for lensing in 

homogeneous plasma and in vacuum is presented. 

 
The Interplay of Plasma and Non-Schwarzschild Lensing Effects: Angle of Deflection in 
Asymptotic Flatness 

The deformed Schwarzschild-like metric, which describes a static, asymptotically flat, vacuum spacetime 

in standard Boyer–Lindquist coordinates, can be expressed as follows [1]. 

 

𝑑𝑠2 = − (1 −
2𝐺𝑀

𝑐2𝑟
) (1 + ℎ)𝑐2𝑑𝑡2 + 𝑓−1(1 + ℎ)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)                                  (38) 

 

The spacetime metric is understood to comprise parameters that quantify potential discrepancies from the 

Schwarzschild metric, in conjunction with the lensing object. When ℎ(𝑟) = 0, the metric reduces to the 

Schwarzschild metric in Boyer-Lindquist coordinates. The function ℎ(𝑟) can be selected as: 

 

ℎ(𝑟) = ∑ 𝜖𝑘 (
𝐺𝑀

𝑐2𝑟
)

𝑘
∞
𝑘=0                                                                             (39) 

 

The constraints on 𝜖 = 0 can be derived from the asymptotic properties of metric (38). The condition for the 

metric to be asymptotically flat implies that 𝜖0 = 𝜖1 = 0. Here, we have chosen the function ℎ(𝑟) to be the 

third power of 2𝐺𝑀/(𝑐2𝑟), as in [2]. 

ℎ(𝑟) =  𝜖 (
𝐺𝑀

𝑐2𝑟
)

3

                                                                                    (40) 

 

As 𝜖 approaches zero, the metric (38) reduces to the standard Schwarzschild metric, which is well known in 

the context of general relativity. In the limit of large radii, the non-Schwarzschild metric of a static and 

asymptotically flat spacetime can be written as [28]: 

 

𝑑𝑠2 = 𝑑𝑠0
2 + (

2𝐺𝑀

𝑐2𝑟
− ℎ) 𝑐2𝑑𝑡2 + (

2𝐺𝑀

𝑐2𝑟
+ ℎ) 𝑑𝑟2                                           (41) 

 

the flat part of the above metric is as follows: 

 

𝑑𝑠0
2 = − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2( 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)                                             (42) 

                                    

In the Cartesian coordinates, the components ℎ𝛼𝛽 are written as 

 

ℎ00 = − (−
𝑟𝑔

𝑟
+ ℎ)                                                                                      (43) 

 

ℎ𝑖𝑘 =  (
𝑟𝑔

𝑟
+ ℎ) 𝑛𝑖𝑛𝑘 .           ℎ33 =  (

𝑟𝑔

𝑟
+ ℎ) 𝑐𝑜𝑠2𝜒,    𝑟𝑔 = 2𝐺𝑀/𝑐2,    𝑛3 = 𝑐𝑜𝑠𝜒 =

𝑧

𝑟
= 𝑧/√𝑏2 + 𝑧2. 

 
The following formula will serve to calculate the deflection angle of light for non-Schwarzschild lensing 

objects in  

a homogeneous plasma: 

𝛼̂𝑏 = ∫
𝜕

𝜕𝑏

∞

0
[

𝑧2

𝑏2+𝑧2 (𝜀
(

𝐺𝑀

𝑐2 )
3

(𝑏2+𝑧2)
3
2

+
𝑟𝑔

(𝑏2+𝑧2)1/2) − (𝜀
(

𝐺𝑀

𝑐2 )
3

(𝑏2+𝑧2)
3
2

−
𝑟𝑔

(𝑏2+𝑧2)1/2)
1

1−
𝜔0

2

𝜔2

] 𝑑𝑧                               (44) 

 

the deflection angle as be calculated as 

https://doi.org/10.54361/ajmas.258382


Alqalam Journal of Medical and Applied Sciences. 2025;8(3):1838-1851 

https://doi.org/10.54361/ajmas.258382  

 

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 
Received: 21-06-2025 - Accepted: 19-08-2025 - Published: 26-08-2025    1849 

 

𝛼̂𝑏 = −
𝑟𝑔

𝑏
[𝜀 (

𝐺𝑀

𝑐2𝑏
)

2

(
1

1−
𝜔0

2

𝜔2

−
1

3
) − (1 +

1

1−
𝜔0

2

𝜔2

)]                                            (45) 

 

The above formula (45) is valid only for 𝜔 > 𝜔0, because the waves with 𝜔 < 𝜔0 do not propagate in the 

plasma. One can see from (45) that when there is a vacuum, where 𝜔0 = 0  and no deformation in spacetime 

where 𝜀 = 0 It is a gravitational deflection. 

 

𝛼̂𝑏 = 2 (
𝑟𝑔

𝑏
)                                                                                              (46) 

 
This is the Schwarzschild formula. In the presence of plasma and in the absence of space-time 
deformation, formula (45) becomes: 

𝛼̂𝑏 =
𝑟𝑔

𝑏
(

1

1−
𝜔0

2

𝜔2

+ 1)                                                                                    (47) 

 

As shown by [29], it can easily be seen that, in the absence of plasma, the deflection angle by non-

Schwarzschild space-time will be: 

 

𝛼̂𝑏 = −2
𝑟𝑔

𝑏
(

1

3
(

𝐺𝑀

𝑐2𝑏
)

2

𝜖 − 1)                                                                         (48) 

 
To highlight the importance of our research, we compare the second term on the right-hand side of Eq. (45) 

with the deformation parameter for 𝛼̂𝑏, and the first term, by order of magnitude. The ratio of these terms is 

equal to a certain value when 𝜔0 ≪ 𝜔. 

−
1

3
𝜖 (

𝐺𝑀

𝑐2𝑏
)

2

                                                                                               (49) 

 

 Now, let us examine how the deflection angle behaves in a weak field for a lens with homogeneous plasma, 

as described by a non-Schwarzschild metric (38). As can be seen from (Figure 8), the deflection angle 

decreases with increasing impact parameter 𝑏 for all values of the deformation parameter 𝜖, whether the 

lens is in a vacuum (Figure 8a), or surrounded by plasma (Figure 8 b).  

It should be noted that deflection can be strongest for radio waves when the frequency of the electromagnetic 

wave slightly exceeds the plasma frequency [30], and for other wavelengths when the frequency of light is 
much greater than the electron frequency in the plasma, resulting in a Schwarzschild value of Eq. (46). 

 

 
Figure 8. Deflection angle 𝜶𝒃  as a function of the impact parameter 

 

The change of deflection angle 𝛼 by the deformed lensing object with a square ratio of electron frequency 

plasma 𝜔0 to the frequency of the photon 𝜔 changes from zero to one are shown in (Figure 9), which tells us 

that the deflection angle is increasing monotonically with frequency 𝜔 is approaching the electron plasma 

frequency 𝜔0. 
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Figure 9. Illustrates the variety of the deflection angle 𝜶𝒃 with the deformed parameter 𝝐. 

 

Conclusion 

This study explores the influence of gravitational and plasma effects on light deflection and time delay in 

strong lensing systems. While gravitational deflection and refraction are typically negligible in simplified 

models, their combined impact becomes significant in the presence of plasma. Homogeneous plasma 

introduces chromatic gravitational deflection dependent on photon frequency, whereas non-homogeneous 

plasma contributes both chromatic gravitational and refractive deflection. These chromatic effects, 
observable primarily in long radio wavelengths, cause wavelength-dependent shifts in image positions and 

are detectable only in strong lens systems. The research also analytically examines time delays in plasma-

rich environments, decomposing them into gravitational potential delay, geometric delay, and plasma-

induced dispersion delay. Using the singular isothermal sphere model, plasma effects are incorporated as 

minor corrections to gravitational deflection—negligible in the optical range but notable in radio frequencies. 

Detectable discrepancies in image positions across spectral bands indicate the necessity of including plasma 
effects in lens modelling. Additionally, a literature review on gravitational lensing around deformed, non-

Schwarzschild objects surrounded by plasma reveals that light deflection is proportional to both the 

gravitational mass and the deformation parameter (ɛ). The deformation-to-mass ratio observed may be 

comparable to that found in typical neutron stars. 
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