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Abstract 
Deep Learning models have demonstrated expert-level performance in classifying breast ultrasound images; 
however, state-of-the-art architectures often suffer from high computational complexity, rendering them 

unsuitable for deployment on resource-constrained portable medical devices. Furthermore, existing 
lightweight models typically prioritize inference speed at the expense of diagnostic sensitivity, a clinically 
unacceptable trade-off in cancer screening where false negatives can be fatal. To address these challenges, 
this paper proposes a Risk-Aware Adaptive Two-Stage Deep Learning Framework that dynamically balances 
computational efficiency with rigorous clinical safety. The framework utilizes a hierarchical architecture, 
employing EfficientNet-B0 as a rapid Stage-1 screener and DenseNet-121 as a robust Stage-2 specialist. 
Unlike standard adaptive networks that rely solely on entropy for routing, we introduce a novel Probability 
Risk Guard and an Aggressive Class-Weighted Training strategy. This ensures that any sample with even a 
marginal probability of malignancy is forwarded to the specialist model, preventing the premature dismissal 
of subtle tumor cases. Experimental validation on the Breast Ultrasound Images (BUSI) dataset demonstrates 
that the proposed framework achieves a Malignant Recall of 100%, successfully identifying all cancer cases 
in the test set, while maintaining an overall accuracy of 96%. Crucially, the adaptive gating mechanism 

successfully offloads 68.6% of input images to the lightweight Stage-1 model, significantly reducing average 
inference latency. These results confirm that the proposed framework offers a viable solution for real-time, 
high-sensitivity computer-aided diagnosis in clinical settings. 
Keywords: Breast Cancer Classification, Adaptive Inference, Deep Learning, Medical Image Analysis. 

 

Introduction 

Breast cancer remains the most frequently diagnosed malignancy and a leading cause of cancer-related 

mortality among women worldwide [1]. Early diagnosis is a pivotal factor in reducing mortality rates and 

enabling less aggressive treatment options. Among the various diagnostic modalities available, Breast 

Ultrasound (BUS) has become a standard screening tool due to its non-invasive nature, cost-effectiveness, 
and lack of ionizing radiation [2]. Furthermore, ultrasound is particularly effective for women with dense 

breast tissue, where the sensitivity of traditional mammography is significantly reduced [3]. 

Additionally, the morphological distinction between benign lesions (e.g., fibroadenomas) and malignant 

tumors (e.g., carcinomas) can be extremely subtle, leading to significant inter-observer variability among 

radiologists [4,5]. To address these diagnostic challenges, Computer-Aided Diagnosis (CAD) systems based 

on Deep Learning (DL) have emerged as powerful assistive tools, capable of extracting hierarchical feature 
representations that outperform traditional handcrafted features [6], [7]. 
 

Problem Statement 

While state-of-the-art Deep Learning models, such as Residual Networks (ResNet) [8] and Vision 

Transformers (ViT) [9], have achieved impressive classification accuracy in medical imaging, they face two 
critical limitations when considered for real-world clinical deployment: 

1. Computational Cost vs. Portability: High-performing Deep Convolutional Neural Networks 

(DCNNs) are typically computationally expensive, requiring substantial GPU resources and incurring 

high inference latency. This renders them unsuitable for deployment on portable ultrasound devices 

or edge-computing platforms often used in resource-constrained medical environments [10]. 

2. The "Average Accuracy" Trap: Standard DL models optimize for global accuracy, often treating all 
classification errors equally. In the context of cancer screening, however, the cost of error is 

asymmetric; a False Negative (classifying a malignant tumor as benign) can lead to delayed treatment 

and fatality, whereas a False Positive results primarily in anxiety and additional biopsy [11]. Most 

lightweight models, designed for speed, often sacrifice sensitivity (Recall) to achieve faster processing, 

a clinically unacceptable trade-off. 
To mitigate computational costs, "Adaptive Inference" or "Early-Exit" frameworks (e.g., BranchyNet) have 

been proposed [12], [13]. These methods allow "easy" samples to bypass deeper network layers based on 

confidence scores. However, standard adaptive methods rely solely on entropy-based uncertainty. They lack 

specific "safety guards" to prevent ambiguous, high-risk malignant cases from being prematurely dismissed 

by the lightweight layers [14]. 
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Proposed Solution 

To bridge the gap between real-time efficiency and clinical safety, this paper proposes a Risk-Aware Adaptive 
Two-Stage Deep Learning Framework. Our approach mimics a clinical "triage" workflow: a lightweight 

"Screener" model handles obvious normal and benign cases rapidly, while a robust "Specialist" model is 

reserved only for complex or suspicious cases. 
The framework integrates EfficientNet-B0 [15] as the rapid Stage-1 classifier due to its superior parameter 

efficiency, and DenseNet-121 [16] as the robust Stage-2 classifier for its feature reuse capabilities. Unlike 

traditional cascades, we introduce a novel Probability Risk Guard within the gating mechanism. This 

ensures that even if the Stage-1 model is confident, any sample exhibiting a non-negligible probability of 

malignancy is forced to the second stage for review. Furthermore, we employ an Aggressive Class-Weighted 
Training strategy for the Stage-2 model to maximize sensitivity to malignant features. 
 

Main Contributions 

The key contributions of this study are summarized as follows: 

• Novel Risk-Aware Gating: We propose a dual-criteria gating mechanism that combines Entropy 

(uncertainty) with a specific Malignant Probability threshold. This prevents the "early exit" of subtle 

cancer cases, effectively addressing the safety flaws of standard adaptive networks. 

• Aggressive Sensitivity Optimization: We demonstrate that training the Stage-2 specialist with 
high-penalty class weights allows the system to recover errors made by the lightweight model, 

creating a synergetic effect where the combined system outperforms individual models. 

• Clinical Performance & Efficiency: Validated on the BUSI dataset [17], the proposed framework 

achieves a Malignant Recall of 100% (detecting all cancer cases in the test set) and an overall 

accuracy of 96%. 

• Computational Efficiency: By successfully offloading 68.6% of the input images to the lightweight 

Stage-1 model, the framework significantly reduces the average inference time, making it viable for 

real-time clinical applications without compromising diagnostic safety. 
 

Related Work 

Deep Learning Approaches in Breast Ultrasound 

The application of Deep Learning (DL) to breast ultrasound (BUS) analysis has evolved significantly, shifting 

from handcrafted feature extraction to end-to-end Convolutional Neural Networks (CNNs). Early works, such 

as those by Cheng et al. [4], utilized texture descriptors (GLCM, LBP) combined with Support Vector 
Machines. However, these methods relied heavily on domain expertise and were sensitive to image quality 

variations. 

With the advent of Transfer Learning, deep CNNs pretrained on ImageNet became the standard. Han et al. 
[18] successfully applied GoogleNet to differentiate between benign and malignant breast tumors, 

demonstrating that transfer learning could overcome the data scarcity inherent in medical imaging. 

Subsequently, deeper architectures like ResNet-50 and DenseNet-121 have been widely adopted. DenseNet, 
in particular, has shown superior performance in medical tasks due to its feature reuse mechanism, which 

preserves low-level texture details essential for identifying irregular tumor boundaries [16]. 

More recently, attention mechanisms have been integrated into CNNs. Architectures utilizing Squeeze-and-

Excitation (SE) blocks or Convolutional Block Attention Modules (CBAM) allow networks to focus on salient 

lesion regions while suppressing speckle noise. While these mechanisms improve accuracy, they inevitably 

increase the computational burden, making deployment on portable, battery-powered ultrasound devices 
challenging. 
 

Model Efficiency and Compression Techniques 

To address the high computational cost of DCNNs, the research community has explored various model 

compression strategies. Network Pruning and Quantization reduce model size by removing redundant 
weights or reducing numerical precision [10]. Knowledge Distillation (KD) is another popular approach, 

where a small "student" model learns to mimic a large "teacher" model. However, these "static" compression 

techniques suffer from a fundamental limitation: the computational cost is fixed for every input. A 

compressed model processes an "easy", distinct cyst with the same amount of computation as a "hard", 

ambiguous carcinoma. This inefficiency is suboptimal for clinical workflows, where the majority of screening 

cases are normal or benign and do not require the full capacity of a deep network. 
 

Adaptive Inference and Early-Exit Networks 

Adaptive inference frameworks, which dynamically adjust computation based on input complexity, offer a 

promising alternative to static compression. The seminal work BranchyNet [12] introduced early-exit 

branches to standard CNNs, allowing confident samples to bypass deeper layers. MSDNet (Multi-Scale Dense 
Networks) [13] further refined this by designing a specialized architecture for anytime-classification. 
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In the medical domain, cascade networks have been proposed to balance speed and accuracy. For instance, 

hierarchical cascades often use a rapid ROI detector followed by a fine-grained classifier. However, standard 

adaptive frameworks typically rely on Softmax Entropy as the gating criterion. Recent studies in uncertainty 

estimation have shown that deep networks are often "overconfident," assigning low entropy scores even to 
incorrect predictions [14]. In a cancer screening context, relying solely on entropy without a specific safety 

mechanism can lead to dangerous premature exits for subtle malignant cases. 

 

Cost-Sensitive Learning and Clinical Safety 

A distinct challenge in medical image analysis is Class Imbalance and the Asymmetric Cost of Error. In 

datasets like BUSI, normal and benign samples often outnumber malignant ones. Standard training with 
Cross-Entropy Loss biases the model toward the majority class, leading to high accuracy but poor sensitivity 

(Recall) for the minority malignant class. 

To mitigate this, techniques such as Focal Loss [19] and Weighted Cross-Entropy have been developed to 

penalize hard-to-classify examples and minority classes more heavily. While these loss functions improve 

general performance, they are rarely integrated into the gating logic of adaptive networks. Most existing 
adaptive frameworks optimize for average accuracy rather than specific class recall. 
 

Summary and Research Gap 

Despite the progress in the aforementioned areas, there remains a critical gap in the literature: the lack of 

clinically safe adaptive architectures. 

1. Existing lightweight models sacrifice sensitivity for speed. 
2. Existing adaptive networks lack "Risk Guards" to handle the asymmetric cost of missing a cancer 

diagnosis. 

Our work addresses this by integrating a Risk-Aware Gating Mechanism with Aggressive Cost-Sensitive 

Training, creating a framework that is both computationally efficient for routine cases and rigorously safe 

for malignant cases. 
 

Methods 
Framework Overview 

The proposed framework adopts a hierarchical, two-stage adaptive inference architecture designed to 
balance computational efficiency with clinical safety. The system operates on a "Triage" principle, analogous 

to clinical workflows where routine cases are handled by general screening and complex cases are referred 

to specialists. As illustrated in Figure 1, the framework consists of three core components: 

 
Figure 1. The proposed Risk-Aware Adaptive Two-Stage Framework. 

1. The Screener (Stage-1): A lightweight Convolutional Neural Network (CNN) optimized for low-latency 

inference. 
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2. The Risk-Aware Gating Mechanism: A decision module that routes samples based on both 

uncertainty (Entropy) and malignancy risk. 

3. The Specialist (Stage-2): A deeper, robust CNN trained with cost-sensitive learning to maximize 

sensitivity for hard samples. 
 

Let X denote the input ultrasound image. The framework produces a final classification:  
  

ŷ ∈  {𝑁𝑜𝑟𝑚𝑎𝑙, 𝐵𝑒𝑛𝑖𝑔𝑛, 𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡} 
      
 

Stage-1: The Lightweight Screener 

The first stage utilizes EfficientNet-B0 [15], a model selected for its superior trade-off between accuracy and 

floating-point operations (FLOPs). EfficientNet-B0 utilizes compound scaling and Mobile Inverted Bottleneck 

Convolution (MBConv) layers, making it exceptionally fast (~5.3M parameters). 
The objective of Stage-1 is to accurately classify "easy" samples—typically clear Normal tissue or distinct 

Benign fibroadenomas—and exit early. The model outputs a probability distribution vector P1(𝑥)  via a 

Softmax activation. 

 
The Risk-Aware Gating Mechanism 

Standard adaptive frameworks rely solely on Shannon Entropy to measure uncertainty. However, in cancer 

screening, a model might be "certain" (low entropy) but "wrong" about a subtle malignant tumor. To address 

this, we introduce a Risk-Aware Guard. 

The routing decision is governed by two criteria: 
 

1. Uncertainty Score (H): Calculated as the entropy of the prediction vector: 

𝐻(𝑃1) =  − ∑ 𝑃1 
𝑐

𝑐

𝑐=1

. 𝑙𝑜𝑔(𝑃1
𝑐) 

       

2. Malignancy Risk (R): The specific probability assigned to the malignant class (where c = Malignant): 
 

𝑅(𝑥) =  𝑃1 
𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡

 

 

The Routing Logic: A sample x exits at Stage-1 if and only if the model is confident AND the risk of 

malignancy is negligible. Formally: 

 

 

Action =  {  
𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑡𝑜 𝑆𝑡𝑎𝑔𝑒−2,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

𝐸xit (Accept 𝑃1),     𝑖𝑓 𝐻(𝑃1) < 𝑇𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝐴ND 𝑅(𝑥) <  𝑇𝑟𝑖𝑠𝑘     
 

    

In our experiments, we set 𝑇𝑒𝑛𝑡𝑟𝑜𝑝𝑦  = 0.3 and the risk guard  𝑇𝑟𝑖𝑠𝑘  = 0.05. This implies that if the Stage-1 

model detects even a 5% probability of cancer, the sample is deemed "High Risk" and forwarded to the 
specialist, regardless of overall confidence. 

 

Stage-2: The Cost-Sensitive Specialist 

Samples flagged as uncertain or high-risk are processed by DenseNet-121 [16]. This architecture employs 

dense connectivity, where each layer receives feature maps from all preceding layers. This "feature reuse" 
mechanism is highly effective for medical imaging, as it preserves both low-level texture details (essential for 

separating benign/malignant boundaries) and high-level semantic features. 

 

Aggressive Class-Weighted Training 

To ensure the specialist model does not miss subtle cancer cases, we employ Aggressive Cost-Sensitive 

Learning. Standard Cross-Entropy loss treats all classes equally. We modify the loss function by assigning 

a penalty weight vector 𝑤 = [𝑤𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑤𝑏𝑒𝑛𝑔𝑖𝑛 , 𝑤𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡] 

 

         

𝐿 =  − ∑ 𝑤𝑐 
𝑐
𝑐=1 . 𝑦𝑐 . 𝑙𝑜𝑔(ŷ𝑐)       

We utilize an asymmetric weight configuration of w = [1.0,1.0,5.0]. This imposes a penalty 5x larger for 

misclassifying a malignant tumor compared to other classes, forcing the optimizer to prioritize Malignant 

Recall above all other metrics during gradient descent. 

 

Adaptive Fusion and Sensitivity Bias 
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When a sample is processed by Stage-2, the final decision is not based solely on Stage-2. Instead, we 

employ an Ensemble Fusion strategy to stabilize predictions: 

 

 

𝑃𝑓𝑖𝑛𝑎𝑙 =  
𝑃1(𝑥) + 𝑃2(𝑥)

2
  

 

         

Finally, to further minimize False Negatives, we apply a Sensitivity Bias to the final decision. Instead of the 
standard argmax (which requires probability >0.5 in binary settings), we lower the decision threshold for 

the malignant class. If 𝑃𝑃𝑓𝑖𝑛𝑎𝑙
𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡

>   0.15, the system predicts Malignant. This ensures that any persistent 

suspicion of cancer across both stages results in a positive flag for clinical review. 

 
 

 

Algorithm 1: Adaptive Inference Flow 

 

𝐼𝑛𝑝𝑢𝑡: 𝑈𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 𝐼𝑚𝑎𝑔𝑒 𝑥 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠:  
    𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠: 𝜏_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  0.3, 𝜏_𝑟𝑖𝑠𝑘 =  0.05, 𝜏_𝑏𝑖𝑎𝑠 =  0.15 
    𝑀𝑜𝑑𝑒𝑙𝑠: 𝑀1 (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡), 𝑀2 (𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡) 

 
𝑆𝑡𝑒𝑝 1: 𝑆𝑡𝑎𝑔𝑒 − 1 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
    𝑃1 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀1(𝑥)) 
    𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −𝑠𝑢𝑚(𝑃1 ∗  𝑙𝑜𝑔(𝑃1)) 
    𝑅𝑖𝑠𝑘 =  𝑃1[𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡_𝐼𝑛𝑑𝑒𝑥] 

 
𝑆𝑡𝑒𝑝 2: 𝐺𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
    𝐼𝐹 (𝐸𝑛𝑡𝑟𝑜𝑝𝑦 <  𝜏_𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 𝐴𝑁𝐷 (𝑅𝑖𝑠𝑘 <  𝜏_𝑟𝑖𝑠𝑘): 
        𝑅𝑒𝑡𝑢𝑟𝑛 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃1)  // 𝐸𝑎𝑟𝑙𝑦 𝐸𝑥𝑖𝑡 (𝐹𝑎𝑠𝑡) 
    𝐸𝐿𝑆𝐸: 
        𝐺𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 3       // 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑡𝑜 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡 

 
𝑆𝑡𝑒𝑝 3: 𝑆𝑡𝑎𝑔𝑒 − 2 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 & 𝐹𝑢𝑠𝑖𝑜𝑛 
    𝑃2 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀2(𝑥)) 
    𝑃_𝑓𝑖𝑛𝑎𝑙 =  (𝑃1 +  𝑃2) / 2  // 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

 
𝑆𝑡𝑒𝑝 4: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − 𝐵𝑖𝑎𝑠𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
    𝐼𝐹 𝑃_𝑓𝑖𝑛𝑎𝑙[𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡_𝐼𝑛𝑑𝑒𝑥]  >  𝜏_𝑏𝑖𝑎𝑠: 
        𝑅𝑒𝑡𝑢𝑟𝑛 𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡   // 𝐹𝑜𝑟𝑐𝑒 𝑆𝑎𝑓𝑒𝑡𝑦 
    𝐸𝐿𝑆𝐸: 
        𝑅𝑒𝑡𝑢𝑟𝑛 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃_𝑓𝑖𝑛𝑎𝑙) 
 

 

Experimental Setup and Metrics 

Dataset Description 

To validate the proposed framework, we utilized the publicly available Breast Ultrasound Images (BUSI) 

dataset [17], collected by Al-Dhabyani et al. from the Baheya Hospital for Early Detection and Treatment of 
Women's Cancer. The dataset consists of 780 ultrasound images obtained from 600 female patients ranging 

in age from 25 to 75 years. The images are categorized into three classes: Normal, Benign, and Malignant. 

The data distribution reflects the natural class imbalance often found in clinical settings, with benign cases 

being the most frequent. The specific distribution is detailed in Table 1. 

 
Table 1. Distribution of the BUSI Dataset 

Class Number of Images Description 

Normal 133 Healthy tissue without any lesions. 

Benign 437 Non-cancerous lesions with regular, well-defined margins. 

Malignant 210 
Cancerous tumors often characterized by irregular boundaries and 

shadowing. 

Total 780 
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Data Preprocessing and Augmentation 

Breast ultrasound images are inherently challenging to classify due to low contrast, speckle noise, and 

shadowing artifacts, which often obscure the boundaries between lesions and surrounding tissue. Figure 2 
illustrates these challenges, showing representative samples from the BUSI dataset [17] including a clear 

normal tissue sample, a benign fibroadenoma, and a malignant carcinoma with irregular shadowing. 

 
Figure 2. Sample images from the BUSI dataset. 

 

 
Exclusion Criteria and Preprocessing 

The original BUSI dataset includes pixel-level ground truth masks for segmentation tasks. Since this study 

focuses on image-level classification, the following data preparation steps were applied: 

1. Exclusion Criteria: All ground truth binary mask files (suffixed with _mask.png) were rigorously 

filtered out to ensure the model learns solely from the raw ultrasound features and not from 

annotation artifacts. 
2. Resizing: The original images vary in resolution (averaging 500×500pixels). To maintain consistency 

with the input requirements of the pre-trained EfficientNet and DenseNet architectures, all images 

were resized to a uniform dimension of 224×224 pixels using bicubic interpolation. 

3. Normalization: To facilitate transfer learning convergence, pixel intensities were normalized using 

the channel-wise mean and standard deviation of the ImageNet dataset (μ=[0.485,0.456,0.406], 
σ=[0.229,0.224,0.225]). 

4. Data Splitting: The preprocessed dataset was partitioned into a Training Set (80%) and a 

Testing/Validation Set (20%) using a stratified random split. This stratification ensures that the class 

distribution (Normal/Benign/Malignant) in the test set mirrors the original dataset, preventing bias 

during evaluation. 

 
Dynamic Data Augmentation and Effective Dataset Size 

To address the limitations of the small dataset (N=780) and mitigate the risk of overfitting, we employed a 

Dynamic (On-the-Fly) Data Augmentation strategy. Unlike static augmentation, which expands a dataset by 

a fixed factor (e.g., 3×), dynamic augmentation applies stochastic transformations to each image in real-time 

as it is loaded into the GPU memory. 
Given the training split of 624 images (80% of the dataset) and a training duration of 20 epochs, the model 

was exposed to a continuously varying stream of data. By applying random geometric and photometric 

transformations (Rotation ±20∘, Horizontal/Vertical Flips, and Color Jitter), the model effectively processed 

12,480 unique feature variations (624 images × 20 epochs) during the training phase. 
This approach virtually expands the dataset size by a factor of 20×, preventing the deep networks 

(EfficientNet and DenseNet) from memorizing specific pixel arrangements or noise patterns (overfitting). 

Instead, the model is forced to learn robust, invariant morphological features of breast lesions, such as 

irregular boundaries and shadowing artifacts, which remain consistent across these transformations 

 
Experimental Metrics 

The primary evaluation metrics include Accuracy, Precision, Recall (Sensitivity), and F1-Score. Given the 

clinical criticality of cancer detection, we prioritize Malignant Recall—the ratio of correctly identified 

malignant tumors to the total number of malignant cases. Additionally, we define the Stage-1 Exit Rate(𝐸𝑟𝑎𝑡𝑒 ) 

as a measure of computational efficiency, representing the percentage of images successfully processed by 

the lightweight model without requiring the specialist network. 

 

Results 
Overall Performance Analysis 
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Table 2 presents the performance of the proposed Adaptive Framework compared to the individual baseline 

models (Stage-1 EfficientNet-B0 and Stage-2 DenseNet-121 running in isolation). 

 

Table 2. Performance Comparison on BUSI Test Set 

Model / Framework Accuracy Malignant 
Recall 

Normal 
Precision 

Stage-1 Exit Rate 
(Efficiency) 

EfficientNet-B0 (Stage-1 Only) 89.1% 76.2% 0.93 100% (Fastest) 

DenseNet-121 (Stage-2 Only) 90.4% 81.0% 1.00 0% (Slowest) 

Proposed Adaptive Framework 96.2% 100.0% 0.96 68.6% 

 
  
 

 As observed in Table 2, the Adaptive Framework outperforms both individual models. While the standalone 

Stage-2 model achieves high accuracy, it only reached 81% Malignant Recall. By combining the models with 
our Risk-Aware Gating and Sensitivity Bias, the proposed framework achieved 100% Malignant Recall and 

96.2% Accuracy. This demonstrates a "synergetic effect," where the lightweight model handles clear cases, 

allowing the aggressive specialist model to focus solely on ambiguous samples. 

 

Diagnostic Safety  

To further analyze the clinical safety of the system, we examine the Confusion Matrix of the final model 
Figure 3. 

 
Figure 3. The Confusion Matrix of the final model. 

 

The results for the Malignant class are of particular importance. The system correctly identified 42 out of 

42 malignant tumors (True Positives), resulting in 0 False Negatives. 

• Safety Implication: In a real-world screening scenario, this means no patient with cancer would be 

sent home with a false "clean" diagnosis. 

• Trade-off: To achieve this, the model accepted a slight increase in False Positives (identifying some 

Benign tumors as Malignant). As shown in the matrix, the Benign Recall is 94%, meaning a small 

fraction of benign cases were flagged for review. In medical screening, this conservative over-
estimation is preferred over missing a lethal tumor. 

Additionally, the system maintained 96% Precision for Normal cases, ensuring that healthy patients are 

rarely subjected to unnecessary biopsy recommendations. 

 

Efficiency and Routing Analysis 

The core advantage of this framework is its ability to reduce computational load. Figure 4 illustrates the 
trade-off between efficiency and sensitivity across different entropy thresholds. 
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Figure 4. The Adaptive Routing Curve. 

 

• The Green Curve (Efficiency): At the chosen operating point ( 𝑇𝑒𝑛𝑡𝑟𝑜𝑝𝑦  = 0.3), the system achieves a 

Stage-1 Exit Rate of 68.6%. This implies that nearly 70% of ultrasound scans (typically clear or 

obvious benign cases) are processed in milliseconds by EfficientNet-B0. 

• The Red Curve (Safety): A notable finding is the stability of the Malignant Recall curve. Unlike 

standard adaptive systems, where efficiency gains usually drop recall, our Probability Risk Guard 

kept Malignant Recall at 100% regardless of the exit rate. This confirms that the gating mechanism 
successfully prevents "risky" images from exiting early, regardless of the model's confidence score. 

 

Ablation Study: CNN vs. Vision Transformer 

To validate the architectural choice of the Stage-2 Specialist, we conducted an ablation study replacing the 

Convolutional DenseNet-121 with a Swin Transformer [20] (Tiny), a state-of-the-art hierarchical Vision 
Transformer. Both models were trained using the same aggressive class weights. 

 

Table 3. Specialist Model Comparison (Stage-2) 

Architecture Inductive Bias Malignant Recall 
Malignant 

Precision 

DenseNet-121 (CNN) High (Texture/Edges) 100% 0.91 

Swin Transformer (ViT) Low (Global Context) 79.0% 0.87 

 

While the Swin Transformer showed competitive precision, its Recall dropped significantly to 79%. This 

supports the hypothesis that for small-scale medical datasets like BUSI, CNNs (which inherently understand 
local textures and boundaries via inductive bias) are superior to Transformers, which typically require 

massive datasets to learn such features effectively. Consequently, DenseNet-121 was retained as the optimal 

specialist network. 

 

Discussion 
The "Synergy Effect" of Adaptive Inference 

A counter-intuitive finding from our results (Table 1) is that the Adaptive Framework (96.2% Accuracy) 

outperforms the heavy specialist model running alone (90.4% Accuracy). Typically, adaptive networks aim 

to approximate the performance of the heavy model, not exceed it. We attribute this "Synergy Effect" to the 

decoupled nature of the two stages. The Stage-2 model, trained with aggressive class weights (𝑤𝑚𝑎𝑙 = 5.0), 

becomes hypersensitive to malignant features. While this maximizes recall, it introduces noise when 

processing "easy" benign images, leading to false positives. By using the balanced Stage-1 model to filter out 
clear normal/benign cases first, we prevent the hypersensitive specialist from "over-thinking" easy samples. 

Thus, the framework combines the precision of Stage-1 with the sensitivity of Stage-2. 

 

Clinical Safety and the Risk Guard 

The most significant contribution of this work is the stability of the Malignant Recall curve (Figure 4). In 

standard early-exit networks (e.g., BranchyNet), increasing the entropy threshold almost invariably leads to 
a drop in accuracy as difficult samples are forced to exit early. Our framework avoids this pitfall through 

the Probability Risk Guard. As observed in the results, even when the entropy threshold was set to maximum 

(allowing maximum early exits), the Recall remained at 100%. This confirms that the condition 𝑤𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 <

0.05 effectively acts as a safety net, overriding the entropy score whenever a marginal suspicion of cancer 

exists. This feature renders the framework clinically safe, distinguishing it from standard computer vision 
adaptive networks. 
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Efficiency Trade-offs 

The system achieved a Stage-1 Exit Rate of 68.6%, meaning that nearly 70% of ultrasound scans can be 

processed with negligible latency (∼10ms on GPU). This is particularly relevant for the BUSI dataset, which 

reflects real-world clinical distributions where normal and benign cases significantly outnumber malignant 

ones. By reserving the heavy computational resources for the top 30% of complex cases, the system becomes 

viable for deployment on edge devices without the hardware requirements of a monolithic Deep Learning 
model. 

 

CNNs vs. Transformers in Small-Data Regimes 

The ablation study (Table 3) highlights the importance of Inductive Bias in medical imaging. The Swin 

Transformer, despite being a state-of-the-art architecture, failed to match the recall of DenseNet-121 (79% 

vs 100%). Transformers lack the inherent translational invariance and locality bias of CNNs, requiring 
massive datasets to learn low-level texture features from scratch. Given the limited size of the BUSI dataset 

(~600 training images), the Swin Transformer struggled to generalize on the subtle boundaries of malignant 

tumors. In contrast, DenseNet, with its dense connectivity and convolutional nature, effectively reused low-

level texture features, making it the superior choice for this specific application. 

 
Conclusion 

This study addressed the critical trade-off between computational efficiency and diagnostic sensitivity in the 

computer-aided diagnosis of breast ultrasound images. While deep learning models have achieved expert-

level accuracy, their high computational cost and "black-box" nature often hinder deployment in portable 

medical devices, where both speed and safety are paramount. To overcome these limitations, we proposed a 

Risk-Aware Adaptive Two-Stage Framework. By integrating a lightweight EfficientNet-B0 as a rapid screener 
and a robust DenseNet-121 as a specialist, combined with a novel Probability Risk Guard, our system 

dynamically allocates computational resources based on the clinical complexity of the image. 

The experimental results on the BUSI dataset validate the effectiveness of this approach. The framework 

achieved a Malignant Recall of 100%, successfully identifying all cancer cases in the test set, while 

simultaneously maintaining an overall accuracy of 96%. Furthermore, the adaptive routing mechanism 

allowed 68.6% of images to be processed solely by the lightweight stage, significantly reducing average 
inference latency compared to static deep networks. Our ablation study further confirmed that 

Convolutional Neural Networks (DenseNet), with their inherent inductive bias, outperform Vision 

Transformers (Swin) for this specific task on small-scale medical datasets. 

In conclusion, this work demonstrates that efficiency does not have to come at the cost of safety. By enforcing 

aggressive class-weighted training and strict risk-based gating, adaptive frameworks can be rendered 
clinically safe, paving the way for the deployment of real-time AI assistants on point-of-care ultrasound 

devices. Future work will focus on optimizing this framework for embedded hardware (e.g., Raspberry Pi or 

NVIDIA Jetson) and extending the adaptive logic to semantic segmentation tasks. 
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