

Original article

Evaluation of the Contents of Manganese and Lead and their Hazard Indices in some Coffee Brands

Hamad Hasan*¹, Enaam Mohamed², Rofeida Mohamed¹

¹Chemistry Department, Faculty of Science, Omar Al –Mukhtar University, Libya

²Chemistry Department, Faculty of Education (Al-Marj), Benghazi University, Libya

Corresponding Email. hamad.dr@omu.edu.ly

Abstract

In this study Ten different coffee samples of different brands were collected from many Libyan Markets. The contents of Lead (Pb) and Manganese (Mn) were estimated in the selected samples by atomic absorption spectrometry (AAS). The concentrations of Manganese in the selected samples in this study fluctuated in the ranges of 0.100 and 1.324 ppm. Whereas the concentrations of Lead ranged between 0.036 and 0.537 ppm. The higher concentration of Manganese was recorded in the Al Wasar Coffee sample, whereas the lower concentration of Mn was recorded in the Faysal coffee sample. On the other hand, the contents of Lead ranged between 0.036– 0.537 ppm. The higher concentration of Lead was recorded in the Al- Wasar Coffee sample, while the lower concentrations were recorded in the Dubai Coffee sample. The study concluded that the contents of the selected coffee samples were higher than the limits recorded by WHO. The values of Estimated Daily Intake (EDI) ranged between 0.009- 0.12 for manganese and from 0.003 to 0.048 for lead contents. On the side, the values (Estimated weekly Intake, EWI) for manganese ranged from 0.063 to 1.47 and from 0.021 to 0.336 for lead. On the other hand, the Target Hazard Quotient (THQ) values ranged from 0.0.0007 – 0.0095 for manganese and from 0.00031 – 0.0038 for lead. The results of these recorded high values of manganese contents are within the safety limits.

Keywords. Lead, Manganese, Coffee samples, imported, Hazard Indexes.

Introduction

The process of making coffee starts with the separation of the seeds from coffee cherries, which are the fruits of the coffee plant, to create unroasted green coffee beans. After being roasted, the "beans" are finely pulverized. The ground roasted beans used to make coffee are usually soaked in hot water and then filtered out. Although cold or iced coffee is frequently served, it is typically served hot. There are many ways to make and serve coffee, such as espresso, French press, coffee latte, or canned coffee that has already been made. To cover up the bitter taste or improve the flavor, sugar, sugar alternatives, milk, and cream are frequently added. Despite being a worldwide product, coffee has a long history of being strongly associated with Red Sea culinary customs. The oldest reliable accounts of coffee consumption date back to the middle of the 15th century, when Yemeni Sufis began using the plant [4][5]. Yemen supplied most of the world's coffee imports until the end of the 17th century. However, when coffee became increasingly popular, it began to be grown in Java in the 17th century and in the Americas starting in the 18th century [6]. C. arabica and C. robusta are the two varieties of coffee beans that are grown most frequently [7]. More than 70 countries grow coffee, mostly in the tropical regions of the Americas, Southeast Asia, the Indian subcontinent, and Africa. Unroasted, green coffee is traded as a product of agriculture [8]. Brazil produced 31% of the world's coffee beans in 2023, making it the top producer, followed by Vietnam. Coffee producers are disproportionately poor, even though coffee sales exceed billions of dollars globally each year. The coffee industry's detrimental effects on the environment, such as water use and land clearance for coffee cultivation, have been highlighted by its detractors. Estimate heavy metals have been conducted in many studies in Libya on different samples as water, soil, plants, and others [9-40]. Also, there are different chemical studies on different hazard compounds that may be found in food samples [41-89]. This study aims to estimate the contents of Lead and Manganese in different coffee samples collected from local markets in some Libyan cities.

Methods

Sampling

Ten different samples of commercial coffee brands were collected from different Libyan Markets. The samples were illustrated in (Table 1).

Samples preparation

0.5 gram of each sample was transferred to clean and dry conical flasks. Then, 5 ml of nitric acid and 25 ml of distilled water were added to the samples.

Digestion of the lead and Manganese metals

The samples were designed after adding nitric acid by used hot plate, where the samples were left for two hours and then allowed to cool. The sample, the samples were filtered, and completed the volume to 100

mL, the digestion of the samples was carried out according to previous studies described on solid samples [10-15].

Table 1. The studied Coffee brand samples

Sample No	Sample Type
1	Al-Wasar
2	Mssafi
3	Faysal
4	Al Ameed
5	Dubai
6	Turkish
7	Alkalig
8	Dar Al Bon
9	AbuAuf
10	Sekeroglu

Determination of Manganese and Lead

The lead metal contents were measured by atomic absorption (Type Thermo) at the central laboratory of Omar Al-Mukhtar University.

Estimate the human health risk

The human health risk assessment of the intake of elements with coffee was based on the Estimated Daily Intake (EDI) (1) and the Target Hazard Quotient (THQ) (2, 3). For assessment of toxic element intake (Pb, Mn), the standard values proposed by EFSA were adopted: TWI (tolerable weekly intake) for. Due to the damage caused by Mn to human health, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a provisional tolerable monthly intake (PTMI) of 25 µg/kg BW and a BMDL value (benchmark dose lower confidence limit) for Pb, determined for adult consumers: BMDL01—1.5 µg/kg/bw per day.

Estimated Daily Intake (EDI)

The estimated Daily Intake was calculated from the following equation:

$$\text{EDI} = (\text{MS} \times \text{C})/\text{BW}$$

Where MS is the daily coffee intake 6.33 g/day [16] with 100 mL of water; C is the content of the element in the analyzed coffee (mg/kg); and BW is the reference body weight (70 kg).

Estimated Weekly Intake (EWI)

The weekly Intake values were estimated by the following equation:

$$\text{EWI} = \text{EDI} \times 7 \text{ [µg/kg bw/week]}$$

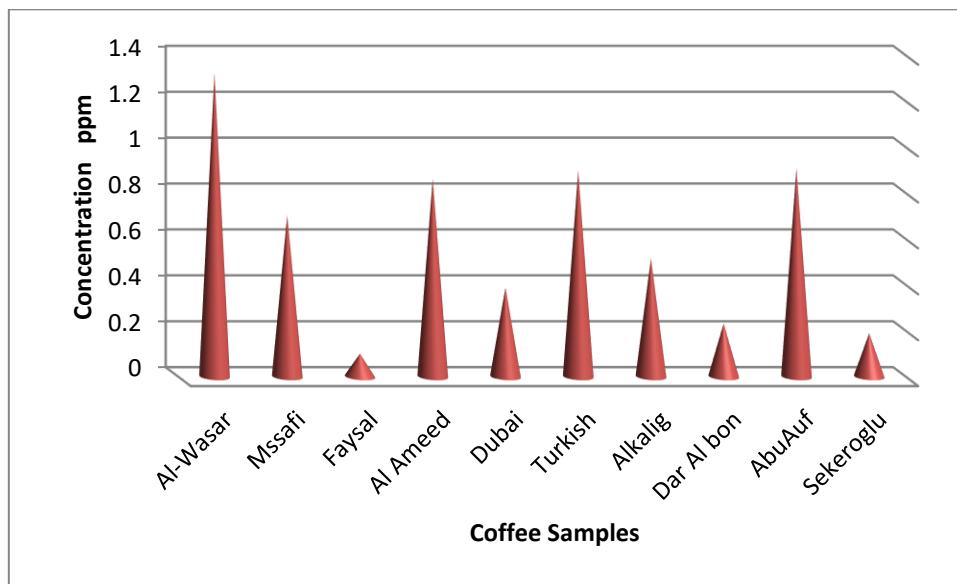
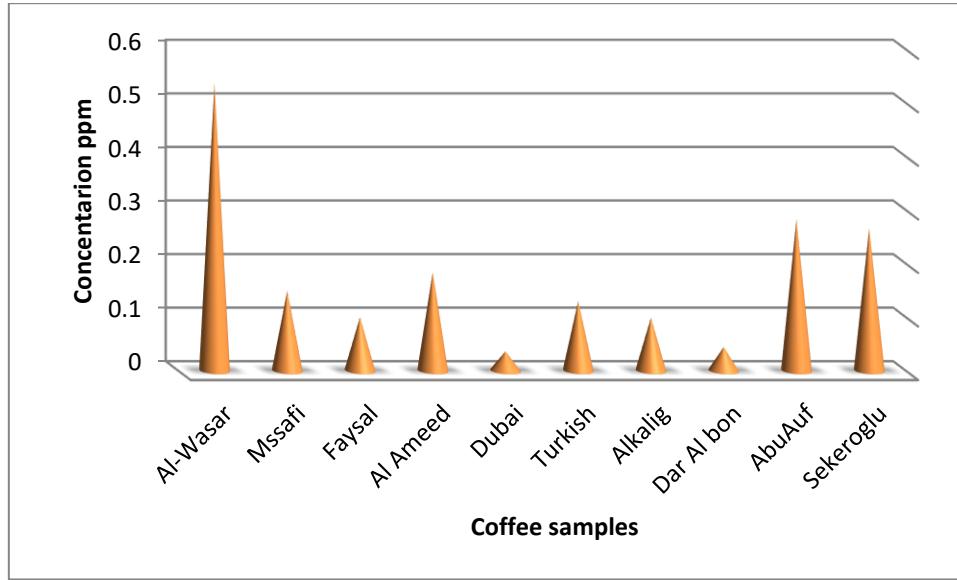
Target Hazard Quotient (THQ)

The total Target Hard quotient was calculated according to the following equation:

$$\text{THQ} = (\text{EF} \times \text{ED} \times \text{MS} \times \text{C})/(\text{RfD} \times \text{MS} \times \text{AT}) \times 10^{-3}$$

$$\text{THQ} = (\text{EF} \times \text{ED} \times \text{MS} \times \text{C})/(\text{RfD} \times \text{MS} \times \text{AT}) \times 10^{-3}$$

Where



EF: is the exposure frequency to trace elements (365 days/year); ED: is the exposure duration (70 years); MS: is the daily coffee intake 6.33 g/day [16]; C: is the concentration of trace elements in coffee (mg/kg); RfD: is the oral reference dose of trace element (mg/kg bw/day): Mn = 0.14; [28]; BW: is the reference body weight (70 kg); AT: is the averaged exposure time to non-carcinogenic trace elements (365 days × 70 years).

Results

The concentrations of Manganese in the selected samples in this study fluctuated in the ranges of 0.100 and 1.324 ppm. Whereas the concentrations of Lead ranged between 0.036 and 0.537 ppm. The higher concentration of Manganese was recorded in the Al Wasar Coffee sample, whereas the lower concentration of Mn was recorded in the Faysal coffee sample. On the other hand, the contents of Lead ranged between 0.036– 0.537 ppm. The higher concentration of Lead was recorded in the Al-Wasar Coffee sample, while the lower ones were recorded in the Dubai Coffee sample (Table 2) and (Figures 1&2).

Table 2. The concentrations (ppm) of Mn and pb in the studied coffee samples

Sample No	Sample Type	Manganese Concentrations	Lead Concentration
1	Al-Wasar	1.324	0.537
2	Mssafi	0.704	0.149
3	Faysal	0.100	0.100
4	Al Ameed	0.864	0.184
5	Dubai	0.389	0.036
6	Turkish	0.899	0.130
7	Alkalig	0.516	0.099
8	Dar Al bon	0.232	0.044
9	AbuAuf	0.909	0.283
10	Sekeroglu	0.189	0.266
Average	-	0.612	0.182
±SD	-	0.330	0.330

Figure 1. The concentrations of Manganese in the coffee samples**Figure 2. The concentrations of Lead in the Coffee samples****Estimated Daily Intake (EDI), Estimated Weekly Intake (EWI), and Target Hazard Quotient (THQ)**

The values of were illustrated in (Table 3). The results of this study showed that the Daily Intake (EDI) of manganese ranged between (0.009 – 0.12), higher values were recorded for the sample (1), whereas the lower one was recorded in sample (3). The values of EDI of lead metal ranged between (0.003 – 0.048), the highest value was observed in sample No 1, and the lower one was recorded in sample No (8). For the EWI,

the results of this study recorded that their values ranged between (0.063 – 1.47) and (0.021 – 0.336) for the manganese and lead content, respectively. The Target Hazard Index values showed that the higher values of manganese (0.336) were obtained in sample No.1, while the lower (0.021) value was recorded in sample No. (8). On the side, the higher value of Lead (0.0038) was recorded in sample No.1, whereas the lower one (0.00031) was observed in sample No.8 (Table 3).

Table 3. The values of EDI, EWI, and THQ of the studied samples

Sample	EDI Mn	EWI Mn	THQ Mn	EDI Pb	EWI Pb	THQ pb
1	0.12	1.47	0.0095	0.048	0.336	0.0038
2	0.06	0.42	0.0050	0.0054	0.0378	0.0010
3	0.009	0.063	0.0007	0.009	0.063	0.00071
4	0.078	0.546	0.0061	0.016	0.112	0.0013
5	0.035	0.245	0.0027	0.035	0.245	0.0017
6	0.081	0.567	0.0064	0.011	0.077	0.00054
7	0.0466	0.322	0.0036	0.008	0.056	0.00039
8	0.020	0.14	0.0016	0.003	0.021	0.00031
9	0.082	0.574	0.0064	0.007	0.049	0.0020
10	0.017	0.119	0.0013	0.024	0.168	0.0018

Discussion

The presence of trace elements, which make up 7% of coffee beans and can be crucial to the body's regular operation, has been linked to this impact. Iron, for instance, is involved in oxygen transfer, DNA synthesis, and electron transport. Coffee beverages may be a source of contaminants, including dangerous materials that are found in the environment because of either natural (volcanic eruptions, leaching from soil and rocks) or anthropogenic (industrial and agricultural operations, including ineffective waste management) sources [91]. The mineral content of coffee can vary and include dangerous elements like lead (Pb) and manganese (Mn), depending on the kind and variety of coffee, as well as the brewing procedure [92]. The purpose of this article was to determine the content of particular trace elements, including lead and manganese, in coffees sold in Libya and to compare the intake with the RDA (Recommended Dietary Allowance) of the elements studied in ground and instant coffee. It also determines the risk to consumers' health associated with drinking coffee and being around these ingredients. Because coffee is so widely consumed, it is crucial to understand its chemical makeup. Additionally, coffee can be used as a supplement for specific minerals, even though it is not usually advertised as a source of minerals. The average manganese concentration in the ground coffees under analysis was similar to what previous writers had found. However, earlier research found far lower manganese quantities in coffee, ranging from 24.6 to 49.5 $\mu\text{g/g}$, which is around three times greater than the current study's conclusion.

The average manganese concentration of the instant coffee under test in this investigation. On the other hand, other authors have reported a range of values, from 3.62 ppm to 38.85 ppm. The recommended daily intake of manganese is 2.3 mg for men and 1.8 mg for women. The THQ coefficient was 0.021 and 0.336 for manganese, and from 0.00031 to 0.0038 for lead; these values are lower than those found in earlier research. The average lead concentration in ground coffees was similar to findings from other authors, who discovered mean lead concentrations of 0.02 and 0.017 ppm, respectively. Instant coffee also had low amounts of lead, with an average of 0.002 ppm, $0.014 \pm$. The concentration of lead in instant coffee was significantly lower than that obtained by previous studies who found the mean value to range from 0.09 to 0.91 ppm [92].

Conclusion

This study showed the presence of Manganese and Lead in the studied samples (Coffeebrands) collected from local Markets at Al Bayda city, Libya.

Acknowledgment

The authors appreciated the collaboration of the central lab of chemical analysis at Omar Al-Mukhtar University during the preparation of the samples.

Conflict of interest.

Nil

References

1. Saud S, Salamatullah AM. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules. 2021;26(24):7634.
2. Grembecka M, Malinowska E, Maufakkir W, Szefer P. The content of chemical elements in ground and soluble coffee and the evaluation of minerals leaching into infusions. Bromat Chem Toksykol. 2006;1:7-14.

3. Lee SJ, Kim MK, Lee KG. Effect of reversed coffee grinding and roasting process on physicochemical properties including volatile compound profiles. *Innov Food Sci Emerg Technol.* 2017;44:97-102.
4. Mussatto SI, Machado EM, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residue. *Food Bioprocess Tech.* 2011;4:661-672.
5. Gosalvitr P, Cuellar-Franca R, Smith R, Azapagic A. An environmental and economic sustainability assessment of coffee production in the UK. *Chem Eng J.* 2023;465:142793.
6. Vareltzis P, Gargali I, Kiroglou S, Zeleskidou M. Production of instant coffee from cold brewed coffee; process characteristics and optimization. *Food Sci Appl Biotechnol.* 2020;3(1):39-46.
7. Messina G, Zannella C, Monda V, Dato A, Liccardo D, De Blasio S, et al. The Beneficial Effects of Coffee in Human Nutrition. *Biol Med.* 2015;7:240.
8. Guadalupe GA, Chavez SG, Arellanos E, Doménech E. Probabilistic Risk Characterization of Heavy Metals in Peruvian Coffee: Implications of Variety, Region and Processing. *Foods.* 2023;12(17):3254.
9. Al-Nayyan N, Mohammed B, Hamad H. Estimate of the concentrations of heavy metals in soil and some plant samples collected from (near and far away) of the main road between Al-Bayda city and Wadi Al-Kouf region. *AlQalam J Med Appl Sci.* 2025;(1):816-26.
10. Hasan HMI. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria. Alexandria University; 2006.
11. Hamad M H. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria. Alexandria University; 2006.
12. Hamad M, Mohammed AA, Hamad MAH. Adsorption and kinetic study for removal some heavy metals by use in activated carbon of sea grasses. *Int J Adv Multidiscip Res Stud.* 2024;4(6):677-85.
13. Hamad M AH, Hamad NI, Mohammed M Y A , Hajir O A A , Al-Hen dawi RA. Using Bottom Marine Sediments as Environmental Indicator State of (Tolmaitha – Toukra) Region at Eastern North Coast of Libya. *J Scholars Journal of Engineering and Technology.* 2024;2(14):118-132.
14. Hamad MIH. The heavy metals distribution at Coastal water of Derna city (Libya). *Egypt J Aquat Res.* 2008;34(4):35-52.
15. Hamad MIH, Mojahidul Islam. The concentrations of some heavy metals of Al-Gabal Al-Akhdar Coast Sediment. *Archives of Applied Science Research.* 2010;2(6):59-67.
16. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. *J EPH Int J Appl Sci.* 2016;2(2):24-7.
17. Hamad MAH, Hussien S SM, Basit EE M. Accumulation of Some Heavy Metals in Green Algae as Bio Indicators of Environmental Pollution at Al-Hania region: Libya Coastline. *Int J Adv Multidisc Res Stud.* 2024;4(5):188-190.
18. Hamad MIH, Ahmed MA. Major cations levels studies in surface coastal waters of Derna city, Libya. *Egypt J Aquat Res.* 2009;35(1):13-20.
19. Hamad MIH, Mojahid U I. The concentrations of some heavy metals of Al-Gabal Al-Akhdar Coast Sediment. *Archives of Applied Science Research.* 2010;2(6):59-67.
20. Hamad MIH, Masoud MS. Thermal analysis (TGA), diffraction thermal analysis (DTA), infrared and X-rays analysis for sediment samples of Toubrouk city (Libya) coast. *Int J Chem Sci.* 2014;12(1):11-22.
21. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. *J Rad Nucl Appl.* 2024;9(1):47-51.
22. Hasan HAH. Estimate lead and cadmium contents of some archeological samples collected from ancient cities location (Cyrene and Abolonia) at Al-Gabal Al-Akhder Region, Libya. *Univ J Chem Appl.* 2021;12(21):902-7.
23. Alfutisi H, Hasan H. Removing of thymol blue from aqueous solutions by pomegranate peel. *International Journal of Applied Science.* 2019;1(1):111-119.
24. Hasan JA, Hasan HMA. Potential human health risks assessment through determination of heavy metals contents in regularly consumed yogurt in Libya. *World J Pharm Pharm Sci.* 2024;13(12):100-12.
25. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. *Arabian Journal of Chemistry.* 2016;9:S1590-S1596.
26. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA , Hamad MIH. Heavy metals accumulation in sediments of Alexandria coastal areas. *Bulletin of the Faculty of Science.* 2012;47(1,2):12-28.
27. Mamdouh SM, Wagdi ME, Ahmed MA, Hamad MIH. Chemical studies on Alexandria coast sediment. *Egypt Sci Mag.* 2005;2(4):93-102.
28. Mamdouh SM, Wagdi ME, Ahmed MA , Alaa EA, Hamad MIH. Distribution of Different Metals in Coastal Waters of Alexandria, Egypt. *The Egyptian Science Magazine.* 2010;7(1):1-19.
29. Mohamed AE, Afnan SA, Hamad MA, Mohammed AA, Mamdouh SM, Alaa RE, et al. Usage of natural wastes from animal and plant origins as adsorbents for the removal of some toxic industrial dyes and heavy metals in aqueous media. *J Water Process Eng.* 2023;55:104810.
30. Mohamed HB, Mohammed AZ, Ahmed MD, Hamad MAH, Doaa AE. Soil heavy metal pollution and the associated toxicity risk assessment in Ajdabiya and Zueitina, Libya. *Sci J Damietta Fac Sci.* 2024;14(1):16-27.
31. Nabil B, Hamad H, Ahmed E. Determination of Cu, Co and Pb in selected frozen fish tissues collected from Benghazi markets in Libya. *Chemical Methodologies.* 2018;2:56-63.
32. Wesam FAM, Hamad MAH. Detection of Heavy Metals and Radioactivity in Some Bones of Frozen Chicken Samples Collected from Libyan Markets. *Int J Adv Multidisc Res Stud.* 2023;3(3):761-764.
33. Wesam FAM, Hamad MAH. Study the accumulation of minerals and heavy metals in *Ulva* algae, *Cladophora*, *Polysiphonia* and *Laurencia* algae samples at eastern north region of Libya coast. *GSC Biological and Pharmaceutical Sciences.* 2023;23(3):147-152.
34. Citrine, Hamad H, HajarAf. Contents of Metal Oxides in Marine Sediment and Rock Samples from the Eastern Libyan Coast, Utilizing the X-ray Method. *AlQalam Journal of Medical and Applied Sciences.* 2015;1316-1321.

35. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. *J Rad Nucl Appl.* 2024;9(1):47-51.

36. Hanan MA, Hamida E, Hamad MAH. Nitrogen, Phosphorus and Minerals (Sodium, Potassium and Calcium) Contents of Some Algae's Species (Anabaena and Spirulina platensis). *Int J Curr Microbiol App Sci.* 2016;5(11):836-841.

37. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. *J EPH Int J Appl Sci.* 2016;2(2):24-7.

38. Mardhiyah F, Hamad H. Assessment of Soil Contamination by Heavy Metals in the Al-Fatayah Region, Derna, Libya. *AlQalam Journal of Medical and Applied Sciences.* 2025:1081-1091.

39. Hamad MIH, Aaza I Y, Safaa S Hn, Mabrouk M S. Biological study of transition metal complexes with adenine ligand. *Proceedings.* 2019;41(1):77.

40. Ahmed O, Ahmed N H, Hamad MAH, Fatin ME. Chemical and Biological Study of Some Transition Metal Complexes with Guanine as Ligand. *International Journal of New Chemistry.* 2023;10(3):172-183.

41. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somia MAE. Synthesis, Characterization and antibacterial applications of compounds produced by reaction between Barbital with Threonine, glycine, lycine, and alanine. *Afr J Biol Sci.* 2024;6(4):1-15.

42. Mabrouk M, Salama, Sana. F. Moussa, Hamad. M. Adress. Hasan. Synthesis, Characterization, and Antibacterial Studies of Metal Complexes with Tyrosine Ligand. *International Journal of New Chemistry.* 2023;10(5):323-339.

43. Hamad Hasan. Biological Study of Some First Series Transition Metal Complexes with Adenine Ligand. *ECSOC 2019: The 23rd International Electronic Conference on Synthetic Organic Chemistry.* 2019 Nov 14.

44. Yasmeen N A, Anas S M, Taffaha A A, Sajeda S E, Hamad M AH. New, Rapid and Sensitive Method for Determination of Vitamins B1, B2 and B9 in Mixture by HPLC Method. *TWIST.* 2024;19(2):312-318.

45. Aisha A, Mona K, Zuhir A, Nevein A-H, Hamad H. The Contents of Fatty Acids, Phenolic Acids, Metals, and Antimicrobial Studies of Leaves and Fruits of Juniperus Phoenicea Plant. *Attahadi Medical Journal.* 2025:437-448.

46. Hamad MAH, Hanan AK, Somia MAE, Emad MO, Ahmed AK, Mohamed GB. Design, synthesis, molecular modeling and biological investigation of glutamine, asparagine, histidine, arginine and glycine linked Schiff base derivatives as potential anticancer and antifungal agents. *Discover Chemistry.* 2025;2(1):336.

47. Khadijah A-A, Mona K, Farag E-M, Zuhir A, Hamad H. Determination of Carbohydrate, Total Antioxidant, and Mineral Concentrations of Linaria triphlla (L)(Om lawlad), Malva parviflora Linn L.(Khabiza), and Myrtus communis L.(Birsim) Plants. *AlQalam Journal of Medical and Applied Sciences.* 2025:2796-2803.

48. Ehdoud A, Salma A, Asraa B, Asma A, Zuhir I, Hamad H. Spectrophotometric Analysis of Carbohydrates, Proteins, Amino Acids, and Metals in Leaf and Stem Extracts of Cistaceae. *Libyan Medical Journal.* 2025:432-441.

49. Hamad H, Amaal Y, Marwa K, Donia M. Determining The Residual Aluminum and Zinc in Food Wrapped by Aluminum Foil (Sandwich Samples) Collected from Some Restaurants in El Bayda City, Libya. *Libyan Medical Journal.* 2025:397-403.

50. Aljamal MA, Hasan HM, AlSonosy HA. Antibacterial Activity Investigation and Anti-Biotic Sensitive's for Different Solvents (Ethanol, propanol, DMSO and di Ethel ether) Extracts of Seeds, Leafs and Stems of (Laurusazorica and Avena sterilis) Plants. *Int J Curr Microbiol App Sci.* 2024;13(11):175-190.

51. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and Determination the of Beta carotene content in carrots and tomato samples Collected from some markets at ElBeida City, Libya. *EPH - International Journal of Applied Science.* 2019;1(1):105-110.

52. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.

53. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. The Anti-Cancer, Anti-Inflammatory, Antibacterial, Antifungal, Anti-Oxidant and Phytochemical Investigation of Flowers and Stems of Anacyclus Clavatus Plant Extracts. *AlQalam Journal of Medical and Applied Sciences.* 2025:415-427.

54. Hasan H, Zuhir A, Shuib F, Abdraba D. Phytochemical Investigation and Exploring the Citrullus Colocynthis Extracts as Antibacterial Agents Against Some Gram and Negative Bacteria Species. *AlQalam Journal of Medical and Applied Sciences.* 2025:392-400.

55. Md Zeyauallah RA, Naseem A, Badrul I, Hamad MI, Azza SA, Faheem AB, et al. Catechol biodegradation by Pseudomonas strain: a critical analysis. *Int J Chem Sci.* 2009;7(3):2211-2221.

56. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acids contents of leafs and stems for two types of herbal plants (Marjoram and Hybrid tea rose) at AL-Gabal AL-Akhder region. *Der Pharma Chemica.* 2014;6(6):442-447.

57. Gonaid MH, Hamad HH, Ibrahim HH, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.

58. El-Mehdawy MF, Eman KS, Hamad MIH. Amino Acid Contents of Leafs and Stems for Three Types of Herbal Plants at Al-Gabal Al-Akhder Region. *World Journal of Chemistry.* 2014;9(1):15-19.

59. Hamad MH, Noura AAM, Salem AM. Phytochemical screening, total phenolic, anti-oxidant, metal and mineral contents in some parts of plantago Albicans grown in Libya. *World Journal of Pharmaceutical Research.* 2024;13(3):1-17.

60. Anees AS, Hamad MIH, Mojahidul I. Antifungal potential of 1,2-4 triazole derivatives and therapeutic efficacy of *Tinea corporis* in albino rats. *Der Pharmacia Lettre.* 2011;3(1):228-236.

61. Hamad H, Marwa M, Amal H. Determining the contents of antioxidants, total phenols, carbohydrate, total protein, and some elements in Eucalyptus gomphocephala and Ricinus communis plant samples. *Libyan Medical Journal.* 2015:222-231.

62. Hamad H, Zuhir A, Farag S, Dala A. Efficiency of *Cynara Cornigera* Fruits on Antibacterial, Antifungal and Its Phytochemical, Anti-Oxidant Screening. *Libyan Medical Journal*. 2025;120-128.

63. Hanan MA, Hamida E, Hamad MAH. Nitrogen, Phosphorus and Minerals (Sodium, Potassium and Calcium) Contents of Some Algae's Species (*Anabaena* and *Spirulina platensis*). *Int J Curr Microbiol App Sci*. 2016;5(11):836-841.

64. Hasan H, Mariea FFE, Eman KS. The Contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH-International Journal of Applied Science*. 2014;6(3):1-7.

65. El-Mehdawe MF, Eman KS, Hamad MIH. Heavy Metals and Mineral Elements contents of Leafs and Stems for some Herbal Plants at AL-Gabal AL-Akhder Region. *Chemical Science Review and Letters*. 2014;3(12):980-986.

66. Hamad H, Ashour S, Ahmed A. Estimation of Amino Acid Composition, Total Carbohydrate, and Total Protein Content in *Ballota pseudodictamnus* Plant Extracts from Al Jabal Al Akhdar Region, Libya. *Libyan Medical Journal*. 2025:266-271.

67. Hamad H, Ahmed H, Wafa A. Evaluation of Anti-Oxidant Capacity, Total Phenol, Metal, and Mineral Contents of *Ziziphus lotus* Plant Grown at Some Regions of Al Gabal Al Khder, Libya. *Libyan Medical Journal*. 2025:137-143.

68. Hesien RA, Amira AKA, Ahlaam MA, Hamad MAH. Determination the Anti -Oxidant Capacity, Total Phenols, Minerals and Evaluation the Anti- Bacteria Activity of Leafs and Stems of Gaper Plant Extracts. *Scholars J Appl Med Sci*. 2024;12(4):451-457.

69. Hamad MAH, Noura AAM, Salem AM. Total Carbohydrate, Total Protein, Minerals and Amino Acid contents in Fruits, Pulps and Seeds of Some Cultivars of Muskmelon and Watermelon Fruit Samples Collected from Al. Der Pharma Chemica. 2024;16(3):330-334.

70. Ben Arous NAA, Naser ME, Hamad MAH. Phytochemical Screening, Anti-bacterial and Anti-fungi Activities of Leafs, Stems and Roots of *C. parviflorus* Lam and *C. salviifolius* L Plants. *Int J Curr Microbiol App Sci*. 2024;13(11):262-280.

71. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of *Helichrysum stoechas* grown in Libya. *Afr J Biol Sci*. 2024;3(6):2349-2361.

72. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Evaluation of Metal and Mineral Contents of Leafs, Stems and Roots of *C. Parviflorus* Lam and *C. Salviifolius* L Plants Growing at Al Ghatal Al-Khder (Libya). *Int J Adv Multidisc Res Stud*. 2024;4(5):191-194.

73. Hamad MAH, Salem AM. Total Carbohydrate, Total Protein, Minerals and Amino Acid Contents in Fruits, Pulps and Seeds of Some Cultivars of Muskmelon and Watermelon Fruit Samples Collected from Algabal Alkhder region. *Scholars J Appl Med Sci*. 2024;12(1):1-7.

74. Haroon A, Hamad MAH, Wafa AAS, Baset ESM. A Comparative study of morphological, physiological and chemical properties of leafs and steam samples of (*E. gomphocephala*) (Tuart) plant growing at coastal (Derna city). *J Res Environ Earth Sci*. 2024;9(12):10-18.

75. Enam FM, Wesam FAM, Hamad MAH. Detection the Contents of Minerals of (Sodium, Potassium and Calcium) and Some Metals of (Iron, Nickel and Copper) in some vegetable and soil samples collected from Al-Marj. *Int J Adv Multidisc Res Stud*. 2023;5(3):304-309.

76. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical Screening of Some Herbal Plants (Menthe, Origanum and Salvia) Growing at Al-Gabal Al-akhder Region-Libya. *Afr J Basic Appl Sci*. 2017;9(3):161-164.

77. Ali RFA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci*. 2017;8(4):5500-5503.

78. Hamad MAH, Hanan AAK, Fatima A. Infrared (IR) Characterization and Physicochemical Properties of Schiff Base Compound Obtained by the Reaction Between 4-Hydroxy-3-methoxy Benzaldehyde and 2-Amino-3. *J Res Pharm Sci*. 2021;7(3):8-12.

79. Hamad MIH, Aaza I Y, Safaa S H, Mabrouk M S. Biological study of transition metal complexes with adenine ligand. *Proceedings*. 2019;41(1):77.

80. Ashraf AA, Hamad MAH, Hanan AAK, Hana FS, Somaia MAE, Taffaha AA, et al. Molecular Docking studies of Some Schiff Base Compounds. *Afr J Sci*. 2024;6(3):3324-3334.

81. Mohamed GB, Zainab SH, Hamad MAH, Hanan AKA, Mounera AAE, Mohammed MY, et al. I.R analysis and some biological applications for some Schiff base compounds prepared between (4- di methyl amino benzaldehyde) and some amino acids (Trptophan, Phenylalanine). *Eur Chem Bull*. 2024;12(5):887-906.

82. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity and GC-MS analysis of chloroform extract of bark of the Libyan *Salvia fruticosa* Mill. *International Journal of Multidisciplinary Sciences and Advanced Technology*. 2021;1(1):715-721.

83. Elsalhin H, Abobaker HA, Hasan H, El -Dayek GA. Antioxidant capacity and Total phenolic compounds of some algae species (*Anabaena* and *Spirulina platensis*). *Scholars Academic Journal of Biosciences (SAJB)*. 2016;4(10):782-786.

84. Alaila AK, El Salhin HE, Ali RF, Hasan HM. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *International Journal of Pharmacy & Life Sciences*. 2017;8(4):5500-5503.

85. Hasan H, Mariea FFE, Eman KS. The Contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH-International Journal of Applied Science*. 2014;6(3):1-7.

86. Abdelrazeg A, Khalifa A, Mohammed H, Miftah H, Hamad H. Using melon and watermelon peels for the removal of some heavy metals from aqueous solutions. *AlQalam J Med Appl Sci*. 2025:787-796.

87. Abdul Razaq A, Hamad H. Estimate the contents and types of water well salts by the Palmer Roger model affecting the corrosion of Al-Bayda city (Libya) network pipes. AlQalam J Med Appl Sci. 2025;744-753.
88. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation, X-ray fluorescence scanning, and flame photometer analysis for sediments and rock samples of Al-Gabal Al-Akhder coast region (Libya). IOSR J Appl Chem. 2021;14(4):20-30.
89. ALambarki M, Hasan HMA. Assessment of the heavy metal contents in air samples collected from the area extended between AlBayda and Alquba cities (Libya). AlQalam J Med Appl Sci. 2025:695-707.
90. Khunlert P, Tanhan P, Poapolathee A, Poapolathee S, Imsilp K. Pyrethroid and metal residues in different coffee bean preparing processes and their human health risk assessments via consumption. Environ Asia. 2022;15(3):94-108.
91. Olechno E, Puścion-Jakubik A, Socha K, Zujko ME. Coffee Brews: Are They a Source of Macroelements in Human Nutrition? Foods. 2021;10(6):1328.
92. de Mejia EG, Ramirez-Mares MV. Impact of caffeine and coffee on our health. Trends Endocrinol Metab. 2014;25(10):489-492.