Original article

Prevalence and Predictors of Diabetic Retinopathy among Newly Diagnosed Type 2 Diabetes Mellitus Patients in Benghazi, Libya: A Cross-Sectional Study

Najah Othman* Muataz Bellah Sanfaz

Department of Ophthalmology, Faculty of Medicine, University of Benghazi, Benghazi, Libya Corresponding Email. najah.ibrahim@uob.edu.ly

Abstract

Diabetic Retinopathy [DR] is a leading cause of visual impairment among adults with diabetes. Early detection is crucial, as retinal changes may be present at the time of Type 2 diabetes mellitus [T2DM] diagnosis. Limited data exist regarding the early occurrence of DR in the Libyan population. This study was conducted to assess the prevalence of DR and identify associated risk factors among newly diagnosed T2DM patients. A cross-sectional observational study among 89 newly diagnosed T2DM patients attending the Ophthalmology Outpatient Department at Benghazi Eye and Ophthalmic Surgery Teaching Hospital. Comprehensive ophthalmological examinations were performed, including dilated fundus assessment. Sociodemographic and clinical variables such as age, gender, duration since diagnosis, smoking status, hypertension, hyperlipidemia, BMI, and HbA1c were recorded. The mean age of participants was 52.66 ± 7.4 years, with a female predominance [60.7%]. The prevalence of DR was 13.5% [12/89]. No significant association was observed between DR and gender, age, smoking status, BMI, hypertension, or hyperlipidemia [p > 0.05]. Logistic regression indicated a borderline association between elevated HbA1c levels and DR [AOR = 1.25, 95% CI: 0.98-1.59, p = 0.068. DR is present in a notable proportion of patients at T2DM diagnosis, highlighting the likelihood of delayed disease recognition. Early retinal screening and strict glycemic control are essential strategies to prevent progression of sight-threatening complications. Further multicenter studies with larger sample sizes are recommended for broader generalization.

Keywords. Diabetic, Retinopathy, Type 2 Diabetes Mellitus, Hba1c.

Introduction

Diabetes mellitus [DM] is a major chronic metabolic disorder that has reached epidemic proportions globally, exerting a substantial burden on public health systems. Based on International Diabetes Federation [IDF] estimates, approximately 537 million adults [20–79 years] were living with diabetes in 2021, equivalent to 1 in 10 people, and this number is projected to rise to 643 million by 2030 and 783 million by 2045 [1,2]. A considerable 87.5% of undiagnosed diabetes cases occur in low- and middle-income countries, where delayed diagnosis frequently leads to advanced complications at presentation [2,3]. Type 2 diabetes mellitus [T2DM] is the most common form of DM, accounting for about 85–90% of cases worldwide [4,5]. It is characterized by a gradual and often asymptomatic onset, allowing hyperglycemia to persist unnoticed for years while microvascular and macrovascular complications progress silently [6]. Among these complications, diabetic retinopathy [DR] remains one of the most frequent and most devastating, representing a leading cause of preventable blindness and visual impairment in the working-age population worldwide [7–9].

The pathophysiology of DR involves chronic hyperglycemia-induced microvascular damage, leading to increased vascular permeability, capillary occlusion, ischemia, and neovascularization [10,11]. These changes can result in retinal hemorrhages, macular edema, and, in advanced cases, retinal detachment with permanent vision loss [12,13]. Nearly all type 1 diabetic patients and approximately 60% of those with T2DM develop some degree of retinopathy within the first two decades of their disease [14]. Recognized risk factors include long duration of diabetes, uncontrolled glycemia, hypertension, dyslipidemia, obesity, pregnancy, cataract surgery, and genetic predisposition [14–16].

The global prevalence of diabetic retinopathy has been estimated at around 22.2% among patients with T2DM [17] and 34.6% in the general diabetic population [8]. In the Eastern Mediterranean Region [EMR], which comprises several low- and middle-income countries, including those in North Africa, diabetes prevalence is among the highest worldwide [18]. DR prevalence in EMR nations shows a wide variation: 28% in Pakistan [19], 37.8% in Iran [20], 27.8–36.4% in Saudi Arabia [21,22], 50% in Kuwait [23], and 48.4% in Jordan [24]. In Libya, studies have reported DR prevalence rates of 30.6% in Benghazi [25] and 16.2% in Misurata [26]. The prevalence of DR at the time of diabetes diagnosis is an important indicator of health system performance, reflecting delays in screening and detection [27]. When T2DM remains undiagnosed for extended periods, a substantial proportion of patients may already develop DR by the time diabetes is first confirmed [7,28]. Yet, most studies have focused on patients with previously known diabetes, with limited research assessing DR prevalence and incidence at first diagnosis, contributing to challenges in health policy planning [29–34].

Given the growing diabetes epidemic in Libya and the burden of related visual impairment, understanding the incidence of diabetic retinopathy among newly diagnosed diabetic patients is essential for timely screening, early intervention, and resource allocation. Therefore, this study aims to determine the incidence of diabetic retinopathy in newly diagnosed diabetes mellitus cases in Benghazi, Libya, and to evaluate associated demographic and clinical risk factors. This study aimed to determine the prevalence of diabetic retinopathy and explore associated clinical and demographic risk factors among newly diagnosed Type 2 diabetes mellitus patients attending Benghazi Eye and Ophthalmic Surgery Teaching Hospital, Benghazi, Libya.

Methods

Study Design and Setting

This cross-sectional observational study was conducted among 89 newly diagnosed type 2 diabetes mellitus patients attending the Ophthalmology Outpatient Department at Benghazi Eye and Ophthalmic Surgery Teaching Hospital, Benghazi, Libya. Ethical approval was received from the Institutional Ethics Committee, and written informed consent was obtained from all participants before enrollment.

Study Population

A purposive sampling method was used to include suitable patients within the study period. Eligible participants were adults aged 40 years or older who had been diagnosed with type 2 diabetes mellitus within the previous 12 months and who consented to undergo a full ophthalmic evaluation.

Eligibility Criteria

Patients with a prior diagnosis of diabetic retinopathy or other retinal disorders, a history of ocular trauma or intraocular surgery, or systemic diseases known to affect the retina were excluded. Pregnant women and individuals under chronic corticosteroid therapy were also excluded from the study.

Ophthalmological Examination

All participants underwent a comprehensive ophthalmic assessment, including visual acuity testing, slitlamp biomicroscopy, refraction, and dilated fundus examination using an indirect ophthalmoscope. Suspected cases of diabetic retinopathy were further evaluated and confirmed.

Data Collection and Statistical Analysis

Sociodemographic and clinical data, including age, sex, duration since diabetes diagnosis, smoking status, hypertension, hyperlipidemia, hemoglobin A1c levels, and body mass index, were recorded. Data entry was performed using Microsoft Excel, and statistical analyses were carried out using SPSS version 25. Quantitative variables were reported as mean ± standard deviation, whereas categorical variables were expressed as frequencies and percentages. Group comparisons were performed using the chi-square test for categorical variables and the Mann–Whitney U test for non-normally distributed quantitative variables. Binary logistic regression analysis was applied to identify factors associated with the presence of diabetic retinopathy. A p-value of less than 0.05 was considered statistically significant.

Results

A total of 89 newly diagnosed T2DM patients were enrolled. The mean age was 52.66 ± 7.4 years, and 60.7% were female. The mean BMI was 31.64 ± 6.35 kg/m². Nearly half of the patients were either active or passive smokers (46.1%), while 31.5% had hypertension and 31.5% had hyperlipidemia. The mean duration since diabetes diagnosis was 310 ± 257 days (range: 7–730), and the mean HbA1c was $8.64 \pm 2.66\%$, indicating poor glycaemic control. There were 12 individuals (13.5%) were found to have diabetic retinopathy, while 77 patients (86.5%) showed no signs of retinopathy. This indicates that the overall prevalence of diabetic retinopathy in the studied sample was 13.5%.

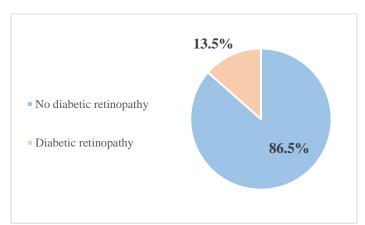


Figure 1. Prevalence of diabetic retinopathy among the study population

Table 1. Baseline Characteristics of the Study Participants (n = 89).

Variable	Category	Frequency	Percent (%)
Candan	Male	35	39.3
Gender	Female	54	60.7
	Mean ± SD	52.66 ± 7.4	
	40–44	14	15.7
A (20 (200 mg))	45–49	18	20.2
Age (years)	50–54	23	25.8
	55–59	13	14.6
	≥60	21	23.6
Con alvin a	Yes	41	46.1
Smoking	No	48	53.9
Limentonaion	Yes	28 31.5	31.5
Hypertension	No	60	67.4
Other Diseases	Yes	12 13	13.5
Other Diseases	No	77	86.5
Hyperlipidemia	Yes	28	31.5
	No	61	68.5
Duration since diabetes	Mean ± SD (Range)	310 ± 257 (7-730)	
HbA1C	Mean ± SD	8.64 ± 2.66	
BMI	Mean ± SD	31.64 ± 6.35	

No statistically significant differences were observed between patients with and without DR in terms of gender, smoking status, hypertension, hyperlipidemia, or presence of other systemic diseases (p > 0.05 for all). Although the proportion of males and smokers was slightly higher among DR patients (17.1% and 15% respectively), these differences were not significant.

Table 2. Comparison of Clinical and Demographic Variables According to the Presence of Diabetic Retinopathy (n = 89)

Variable	Category	No DR (n=77)	With DR (n=12)	p-value
Gender	Male	29 (82.9%)	6 (17.1%)	$x^2 = 0.238$
	Female	48 (90.4%)	6 (9.6%)	P = 0.238
Smoking	Yes	35 (85.0%)	6 (15.0%)	$x^2 = 0.386$
	No	42 (89.4%)	6 (10.6%)	P = 0.386
	Yes	25 (89.3%)	3 (10.7%)	$x^2 = 0.490$
Hypertension	No	51 (86.2%)	9 (13.8%)	P = 0.490
I I-m onlinidomio	Yes	26 (92.9%)	2 (7.1%)	$x^2 = 0.242$
Hyperlipidemia	No	51 (84.7%)	10 (15.3%)	P = 0.242
O(1 D)	Yes	12 (100.0%)	0 (0.0%)	$x^2 = 0.175$
Other Diseases	No	65 (85.3%)	12 (14.7%)	P= 0.175
Variable	Mean Rank		p-value	
Ago (voors)		45.00 / 38	45.99 / 38.67	
Age (years)	43.99 / 36.07		P= 0.360	
Duration since		45 35 / 40 75		U = 435.0
diagnosis (days)	45.35 / 42.75		P= 0.743	
HbA1c (%) 43.18 / 56.71		71	U = 321.5	
110/110 (70)	T3.10 / 30.71			P= 0.091
BMI (kg/m²)	45.85 / 35.96			U = 353.5
Divir (kg/III)				P= 0.21

Binary logistic regression analysis revealed that none of the investigated variables were significantly associated with the presence of diabetic retinopathy (p > 0.05 for all). However, higher HbA1c levels showed a borderline association with increased odds of developing DR (AOR = 1.25; 95% CI: 0.98–1.59; p = 0.068), suggesting that poorer glycaemic control may contribute to early retinal changes. Other factors, including gender, age, smoking status, BMI, and duration since diagnosis, were not significant predictors of DR.

Table 3. Binary Logistic Regression Analysis for Factors Associated with Diabetic Retinopathy among Patients with Newly Diagnosed Type 2 Diabetes Mellitus (n = 89)

Variable	Adjusted OR	95% CI for OR	p-value
Gender (Male vs. Female)	2.34	0.59 - 9.28	0.228
Age (years)	0.94	0.86 - 1.04	0.216
Duration since diagnosis (days)	1.00	0.997 - 1.003	0.940
Smoking (Yes vs. No)	0.80	0.22 - 2.94	0.742
BMI (kg/m²)	0.89	0.78 - 1.02	0.093
HbA1c (%)	1.25	0.98 - 1.59	0.068

Discussion

In this study, we evaluated 89 newly diagnosed patients with type 2 diabetes mellitus [T2DM], with a mean age of 52.66 ± 7.4 years and a predominance of females [60.7%]. The mean BMI was 31.64 ± 6.35 kg/m², and nearly half of the patients were either active or passive smokers [46.1%]. Hypertension and hyperlipidemia were present in 31.5% of patients each, and the mean HbA1c was $8.64 \pm 2.66\%$, reflecting poor glycaemic control. Diabetic retinopathy [DR] was detected in 12 patients [13.5%], indicating a prevalence similar to previously reported studies.

The prevalence of DR in our study [13.5%] aligns closely with pooled prevalence estimates from earlier systematic reviews, which reported rates ranging from 14% to 15% at diagnosis of T2DM [35]. This is consistent with several population-based studies reporting DR prevalence between 10% and 20% in newly diagnosed T2DM patients [27,35–39]. Our findings are slightly lower than some studies from South Asia, where prevalence ranged from 20% to 42.5% [40,41], likely reflecting differences in population demographics, healthcare access, and timing of diagnosis. No statistically significant differences were observed between patients with and without DR in terms of gender, smoking, hypertension, hyperlipidemia, or other systemic diseases [p > 0.05]. Although the proportion of males and smokers was slightly higher among DR patients [17.1% male VS 9.6% female] and [15.0% smokers VS 10.6% nonsmokers], these differences were not significant. These results contrast with findings from the Swedish nationwide study, where DR was more common in men and those with higher HbA1c levels, hypertension, and other comorbidities [42]. Similarly, other studies have reported male gender, hyperglycemia, and hypertension as risk factors for DR at diagnosis [13,35,43,44].

The mean age in our cohort was lower than in other studies, where older age was significantly associated with DR [62.96 vs. 55.53 years; p<0.05] [45]. In our study, age was not a significant predictor of DR [AOR = 0.94; 95% CI: 0.86–1.04; p = 0.216], which may be due to the narrower age range and smaller sample size compared to larger population-based studies [46,47]. Higher HbA1c showed a borderline association with DR [AOR = 1.25; 95% CI: 0.98–1.59; p = 0.068], suggesting that poor glycaemic control may contribute to early retinal changes. This aligns with previous evidence indicating that hyperglycemia is a major risk factor for DR development [48]. Similar associations were reported by many previous studies [44,49–51], which found no significant association between HbA1c and DR at diagnosis. BMI and duration since diagnosis were not significantly associated with DR in our cohort, consistent with some previous studies [45].

Although this study was limited by its single-center design and small sample size, and its cross-sectional nature restricts conclusions regarding causality or disease progression, the findings provide valuable insight into early diabetic retinopathy among newly diagnosed T2DM patients. The duration of diabetes was based on patient recall, and some potential risk factors were not assessed; therefore, larger multicenter studies are recommended to improve generalizability. Overall, our results indicate that the prevalence of DR at the time of T2DM diagnosis in this population is comparable to global estimates. The borderline association with HbA1c underscores the importance of early glycemic control to prevent retinal complications. Since most demographic and clinical variables were not significantly associated with DR, early detection and strict monitoring of glycemic status remain key strategies for reducing the risk of diabetic complications.

Conclusion and recommendations

In this study, 13.5% of newly diagnosed T2DM patients had diabetic retinopathy, with higher HbA1c showing a borderline association, while age, gender, BMI, smoking, hypertension, and duration since diagnosis were not significant predictors. This underscores that DR can develop early, likely due to prolonged undetected hyperglycemia. Therefore, early retinal screening and strict glycemic control from diagnosis are essential. Public awareness and structured programs for early detection of T2DM should be strengthened, and larger studies are needed to identify additional risk factors for DR.

Acknowledgments

I sincerely thank Sara Mohamed A. M. Bogazia, Department of Oral Biology, Faculty of Dentistry, Ajdabiya University, Ajdabiya, Libya, for her valuable assistance with data analysis.

Conflicts of Interest

The authors declare that they have no conflicts of interest related to this study.

References

- 1. International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels: International Diabetes Federation; 2024. p. 2015.
- 2. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
- 3. Chow EA, Foster H, Gonzalez V, McIver L. The disparate impact of diabetes on racial/ethnic minority populations. Clin Diabetes. 2012;30(3):130-3.
- 4. Sosale B, Sosale AR, Mohan AR, Kumar PM, Saboo B, Kandula S. Cardiovascular risk factors, micro and macrovascular complications at diagnosis in patients with young onset type 2 diabetes in India: CINDI 2. Indian J Endocrinol Metab. 2016;20(1):114-8.
- 5. Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol. 2021;69(11):2932-8.
- 6. Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150-60.
- 7. Maple-Brown L, Cunningham J, Dunne K, Whitbread C, Howard D, Weeramanthri T, et al. Complications of diabetes in urban Indigenous Australians: the DRUID study. Diabetes Res Clin Pract. 2008;80(3):455-62.
- 8. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556-64.
- 9. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013 Dec;1(6):e339-49.
- 10. Wang W, Lo AC. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.
- 11. Shukla UV, Tripathy K. Diabetic Retinopathy. 2024 Aug 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
- 12. Crabtree GS, Chang JS. Management of complications and vision loss from proliferative diabetic retinopathy. Curr Diab Rep. 2021;21(9):33.
- 13. Nentwich MM, Ulbig MW. Diabetic retinopathy ocular complications of diabetes mellitus. World J Diabetes. 2015 Apr;6(3):489-99.
- 14. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Diabetic retinopathy. Diabetes Care. 2003 Jan;26 Suppl 1:S99-102.
- 15. Henricsson M, Nyström L, Blohmé G, Ostman J, Kullberg C, Svensson M, et al. The incidence of retinopathy 10 years after diagnosis in young adult people with diabetes: results from the nationwide population-based Diabetes Incidence Study in Sweden (DISS). Diabetes Care. 2003 Feb;26(2):349-54.
- 16. McKay R, McCarty CA, Taylor HR. Diabetic retinopathy in Victoria, Australia: the Visual Impairment Project. Br J Ophthalmol. 2000 Aug;84(8):865-70.
- 17. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021 Nov;128(11):1580-91.
- 18. World Health Organization. Regional Office for the Eastern Mediterranean. The Work of WHO in the Eastern Mediterranean Region Annual Report of the Regional Director. 2014.
- 19. Mumtaz SN, Fahim MF, Arslan M, Shaikh SA, Kazi U, Memon MS. Prevalence of diabetic retinopathy in Pakistan; A systematic review. Pak J Med Sci. 2018;34(2):493-500.
- 20. Mohammadi M, Raiegani AA, Jalali R, Ghobadi A, Salari N. The prevalence of retinopathy among type 2 diabetic patients in Iran: A systematic review and meta-analysis. Rev Endocr Metab Disord. 2019 Mar;20(1):79-88.
- 21. Ahmed RA, Khalil SN, Al-Qahtani MA. Diabetic retinopathy and the associated risk factors in diabetes type 2 patients in Abha, Saudi Arabia. J Family Community Med. 2016;23(1):18-24.
- 22. Hajar S, Al Hazmi A, Wasli M, Mousa A, Rabiu M. Prevalence and causes of blindness and diabetic retinopathy in Southern Saudi Arabia. Saudi Med J. 2015 Apr;36(4):449-55.
- 23. Al-Shammari FK, Al-Meraghi O, Nasif A, Al-Otaibi S. The prevalence of diabetic retinopathy and associated risk factors in type 2 diabetes mellitus in Al-Naeem area (Kuwait). Middle East J Fam Med. 2005;3(2):3.
- 24. Rabiu MM, Al Bdour MD, Abu Ameerh MA, Jadoon MZ. Prevalence of blindness and diabetic retinopathy in northern Jordan. Eur J Ophthalmol. 2015;25(4):320-7.
- 25. Roaeid RB, Kadiki OA. Prevalence of long-term complications among Type 2 diabetic patients in Benghazi, Libya.

 J Diabetol. 2011;2(3). Available from:

 https://journals.lww.com/jodb/fulltext/2011/02030/prevalence_of_long_term_complications_among_type_2.

 3.aspx
- 26. Elhwuegi AS, Darez AA, Langa AM, Bashaga NA. Cross-sectional pilot study about the health status of diabetic patients in city of Misurata, Libya. Afr Health Sci. 2012 Mar;12(1):81-6.
- 27. Looker HC, Nyangoma SO, Cromie D, Olson JA, Leese GP, Black M, et al. Diabetic retinopathy at diagnosis of type 2 diabetes in Scotland. Diabetologia. 2012 Sep;55(9):2335-42.
- 28. Tapp RJ, Shaw JE, Harper CA, de Courten MP, Balkau B, McCarty DJ, et al. The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care. 2003 Jun;26(6):1731-7.
- 29. Bansal D, Gudala K, Esam HP, Nayakallu R, Vyamusani RV, Bhansali A. Microvascular Complications and Their Associated Risk Factors in Newly Diagnosed Type 2 Diabetes Mellitus Patients. Int J Chronic Dis. 2014;2014:201423.

- 30. Cui Y, Zhang M, Zhang L, Zhang L, Kuang J, Zhang G, et al. Prevalence and risk factors for diabetic retinopathy in a cross-sectional population-based study from rural southern China: Dongguan Eye Study. BMJ Open. 2019 Sep;9(9):e023586.
- 31. Chatziralli I, Sergentanis TN, Crosby-Nwaobi R, Winkley K, Eleftheriadis H, Ismail K, et al. Model for Risk-Based Screening of Diabetic Retinopathy in People With Newly-Diagnosed Type 2 Diabetes Mellitus. Invest Ophthalmol Vis Sci. 2017 May;58(6):BIO99-BIO105.
- 32. Ellis JD, Zvandasara T, Leese G, McAlpine R, Macewen CJ, Baines PS, et al. Clues to duration of undiagnosed disease from retinopathy and maculopathy at diagnosis in type 2 diabetes: a cross-sectional study. Br J Ophthalmol. 2011 Sep;95(9):1229-33.
- 33. Guo F, Zhou T, Tang J, Dong M, Wei Q. Related Risk Factors between Subclinical Carotid Atherosclerosis and Diabetic Retinopathy in Newly Diagnosed Type 2 Diabetes Mellitus in China. Exp Clin Endocrinol Diabetes. 2021 Mar;129(4):283-8.
- 34. Kumar S, Panwar A, Kumar P, Atam V, Verma N, Kumar P, et al. Glycaemic status is an important risk factor for the occurrence of diabetic retinopathy in newly diagnosed type 2 diabetic patients. Asian J Med Sci. 2015;6(4):36-9. Available from: https://www.nepjol.info/index.php/AJMS/article/view/11745
- 35. Cai K, Liu YP, Wang D. Prevalence of diabetic retinopathy in patients with newly diagnosed type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2023;39(1):e3586.
- 36. Chișca V. Complicațiile neurooftalmologice la pacienții cu retinopatie diabetică, diagnostic și tratament: Teză de doctor în științe medicale: 321.17--Oftalmologie. 2023.
- 37. Wahab S, Mahmood N, Shaikh Z, Kazmi WH. Frequency of retinopathy in newly diagnosed type 2 diabetes patients. J Pak Med Assoc. 2008;58(10):557.
- 38. Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815-9.
- 39. Hwang H, Kim JY, Oh TK, Chae JB, Kim DY. Relationship between Clinical Features of Diabetic Retinopathy and Systemic Factors in Patients with Newly Diagnosed Type II Diabetes Mellitus. J Korean Med Sci. 2020 Jun;35(23):e179.
- 40. Hamid A, Golar SK, Wharton HM, Clarke M, Wright A. Diabetic retinopathy in newly diagnosed diabetes after kidney and liver transplantation. Br J Diabetes. 2017;17(1):17-8.
- 41. Setia S, Tidake P. Prevalence and Awareness of Diabetic Retinopathy in Diabetic Patients Visiting Tertiary Care Hospitals in Central India. Cureus. 2023;15(5):e39141.
- 42. Sofizadeh S, Eeg-Olofsson K, Lind M. Prevalence and risk factors for diabetic retinopathy at diagnosis of type 2 diabetes: an observational study of 77 681 patients from the Swedish National Diabetes Registry. BMJ Open Diabetes Res Care. 2024 Jun;12(3):e003976.
- 43. Ozawa GY, Bearse MA Jr, Adams AJ. Male-female differences in diabetic retinopathy? Curr Eye Res. 2015;40(2):234-46.
- 44. Hao Z, Huang X, Qin Y, Li H, Tian F, Xu R, et al. Analysis of factors related to diabetic retinopathy in patients with newly diagnosed type 2 diabetes: a cross-sectional study. BMJ Open. 2020;10(2):e032095.
- 45. Khushiramani A, Yedke VG. Diabetic retinopathy among newly diagnosed diabetics. Indian J Clin Exp Ophthalmol. 2025;11(2):454-9.
- 46. Rema M, Deepa R, Mohan V. Prevalence of retinopathy at diagnosis among type 2 diabetic patients attending a diabetic centre in South India. Br J Ophthalmol. 2000;84(9):1058-60.
- 47. Chung YR, Xu T, Tung TH, Chen M, Chen PL. Early screening for diabetic retinopathy in newly diagnosed type 2 diabetes and its effectiveness in terms of morbidity and clinical treatment: A nationwide population-based cohort. Front Public Health. 2022;10:771862.
- 48. Chowdhury SR, Thomas RL, Dunseath GJ, Luzio SD, Wong FS, Owens DR. Incidence of diabetic retinopathy in newly diagnosed subjects with type 2 diabetes mellitus over 5 years: contribution of B-cell function. J Diabetes Complications. 2022;36(1):108028.
- 49. Khan WJ, Aslam T. Frequency of Retinopathy in Patients Newly Diagnosed with Type 2 Diabetes Mellitus. Cureus. 2023 Mar;15(3):e36513.
- 50. Damor V, Bhojak A, Mahant A, Mahaliya N. To Evaluate the Incidence of Diabetic Retinopathy in Newly Diagnosed Diabetic Patients Presented at Tertiary Care Hospital. Natl J Integr Res Med. 2022;13(2):1-5.
- 51. Shah S, Feher M, McGovern A, Sherlock J, Whyte MB, Munro N, et al. Diabetic retinopathy in newly diagnosed Type 2 diabetes mellitus: Prevalence and predictors of progression; a national primary network study. Diabetes Res Clin Pract. 2021 May;175:108776.