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Abstract

Gemcitabine (GEM) is a widely used cytotoxic chemotherapy agent, yet its dose-limiting toxicity is
often linked to severe myelosuppression. This study aimed to investigate the histopathological and
hematological effects of two different therapeutic doses of Gemcitabine on the bone marrow of New
Zealand White rabbits, serving as a model for systemic toxicity. Rabbits were divided into three
groups: a Control group (untreated), a GEM 0.1 mg/kg group, and a high-dose GEM 0.3 mg/kg
group. Peripheral blood samples were analyzed for Complete Blood Count (CBC) parameters, and
bone marrow smears were prepared for morphological assessment and histopathological
examination. Statistical analysis was performed using ANOVA (p < 0.05 was considered
significant). Results: This study evaluated the hematological and bone marrow effects of
gemcitabine administered at 0.1 and 0.3 mg/kg in male rabbits. Bone marrow smears
demonstrated a distinct dose-dependent morphological deterioration. The control group showed
normal cellularity with balanced hematopoietic lineages, indicating healthy marrow activity. In
contrast, rabbits treated with 0.1 mg/kg displayed noticeable hypocellularity and increased
extravasated blood, suggesting early stromal and vascular damage. The 0.3 mg/kg group exhibited
severe myelosuppression, characterized by markedly depleted hematopoietic cells and a diffuse
hemorrhagic background, reflecting profound hypoplasia or near-aplasia of marrow tissue.
Hematological results further supported these morphological findings. Total WBC count decreased
significantly from 7.1 £ 0.18 x103/uL in the control group to 5.0 + 0.08 x10%/uL and 4.4 = 0.20
x10%/uL in the 0.1 and 0.3 mg/kg groups, respectively (p = 0.000). Lymphocytes also declined from
63.6 £ 2.6% to 62.3 £ 0.21% and 52.9 * 1.37%, indicating impaired lymphopoiesis. MID%
decreased from 10.2 + 0.48% to 7.8 £ 0.29% and 7.5 * 0.02%, while granulocytes dropped from
12.3 £ 0.66% to 10.6 = 0.76% and 9.8 + 0.5% across the same groups (p = 0.000). Red blood cells
declined markedly from 6.0 £ 0.15 x10°/uL in controls to 5.0 + 0.05 x10°/uL and 3.9 + 0.26
x10°/uL, demonstrating significant erythropoietic suppression. Platelet counts showed the
sharpest reduction, falling from 435.19 + 21.09 x103/uL to 301.86 + 7.94 x103/uL and reaching
146.6 £ 21.01 x10%/uL, confirming severe thrombocytopenia (p 0.000). Overall, both the
quantitative blood results and qualitative marrow morphology clearly demonstrate that
gemcitabine induces strong, dose-dependent myelosuppression in rabbits. The higher dose (0.3
mg/kg) produced profound hematopoietic toxicity, highlighting the importance of cautious dose
selection and regular hematological monitoring during gemcitabine therapy.
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Introduction

Gemcitabine (2', 2'-difluoro-deoxycytidine, GEM) is a widely utilized nucleoside analog belonging to the
antimetabolite class of chemotherapeutic agents [1]. It is approved as a first-line treatment for various
solid tumors, including pancreatic, non-small cell lung, breast, and ovarian cancers [2]. Its potent
cytotoxic action is achieved after intracellular phosphorylation into its active metabolites, primarily
gemcitabine triphosphate (dFACTP). This active form is incorporated into the elongating DNA strand,
leading to a process known as "masked chain termination," which halts DNA synthesis and triggers
programmed cell death (apoptosis) [3]. Additionally, the diphosphate metabolite (dFdACDP) inhibits
ribonucleotide reductase, further depleting the essential deoxyribonucleotide pools required for DNA
replication [4].

The efficacy of Gemcitabine, like many cytotoxic agents, is intrinsically linked to its toxicity towards
rapidly dividing cells. Consequently, myelosuppression, the suppression of bone marrow activity, emerges
as the principal dose-limiting toxicity (DLT) in clinical practice, frequently necessitating dose reductions or
treatment delays [5]. This toxicity is manifested clinically as cytopenias, particularly neutropenia and
anemia, which can significantly increase the risk of infection and hemorrhage in patients [6]. Although
generally reversible, the severity of myelosuppression is known to be both dose- and schedule-dependent
[7,8]. Understanding the exact morphological changes in the hematopoietic tissues that correlate with
peripheral blood count alterations is crucial for developing better supportive care strategies. While the
hematological effects of Gemcitabine are well-documented in human clinical trials, detailed correlative
studies examining the histopathological damage to the bone marrow (morphology) alongside simultaneous
changes in the peripheral Complete Blood Count (CBC) in a controlled animal model are essential [9].
Rabbits serve as a suitable preclinical model for studying drug-induced hematological toxicity [10-17].
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Therefore, this study aimed to investigate the dose-dependent toxicity of Gemcitabine at two distinct
concentrations (0.1 and 0.3 mg/kg) in New Zealand White rabbits. Correlate the observed changes in
peripheral blood cell counts (CBC) with the microscopic alterations (hypocellularity and hemorrhage)
revealed by bone marrow smears. Provide a clear morphological foundation for the hematological toxicity
of Gemcitabine, reinforcing the need for continuous monitoring during clinical use.

Methods

Animals

A total of fifteen healthy New Zealand White rabbits (of similar age and weight, e.g., 2.0-2.5 kg) were used
in this experiment. The animals were housed under standard laboratory conditions (temperature 22 +2C,
relative humidity 50-60%, and a 12-hour light/dark cycle) and provided with commercial rabbit feed and
water ad libitum.

Experiments

After a one-week acclimatization period, the rabbits were randomly assigned to three experimental groups
(n=5 per group). Gemcitabine (GEM) was reconstituted with sterile normal saline to the required
concentrations immediately before administration.

Animals were allocated into three experimental groups to evaluate the effects of gemcitabine in comparison
with a control. The control group received sterile saline in an equivalent volume, administered
intravenously through the marginal ear vein, thereby serving as the baseline reference for procedural and
vehicle-related influences. In the first treatment group (GEM 0.1), gemcitabine was administered at a dose
of 0.1 mg per kilogram of body weight, delivered via intravenous injection through the marginal ear vein.
The second treatment group (GEM 0.3) received a higher dose of gemcitabine, 0.3 mg per kilogram of body
weight, using the same route of administration to ensure methodological consistency. The standardized
dosing frequency and uniform route of delivery across all groups allowed for reliable comparison of
outcomes and facilitated assessment of dose-dependent effects.

Sample collection

The treatment was administered once a week for 8 weeks. Blood samples were collected from the marginal
ear artery or cardiac puncture (terminal procedure) into tubes containing EDTA as an anticoagulant. The
samples were immediately analyzed using an automated hematology analyzer calibrated. The following
parameters were measured: WBC, LYM, MID, GRAN, and RBCs. Following the terminal blood collection,
bone marrow samples were collected from the femur.

Smear Preparation

A small volume of bone marrow aspirate was collected and immediately used to prepare thin smears on
clean glass slides. The smears were air-dried. Morphological Assessment-stained smears were examined
under a light microscope at a high magnification by a trained pathologist blinded to the treatment groups.
The assessment focused on overall cellularity, presence of hematopoietic cell lineages, and evidence of
pathology such as hemorrhage and stromal damage.

Statistical Analysis

Data were expressed as the Mean *+ Standard Error (SE). The statistical significance between the different
treatment groups was determined using a One-Way Analysis of Variance (ANOVA). Post-hoc analysis
Tukey's HSD test) was used to compare the individual group means. Differences were considered
statistically significant at a threshold of $P < 0.05$. All statistical computations were performed using
Minitab 17.

Results

As shown in Figure 1, the bone marrow smear from the untreated control rabbit exhibits a normal cellular
architecture. The smear is highly cellular, showing a balanced representation of hematopoietic cells from
various lineages at different maturation stages, indicating active and healthy hematopoiesis. GEM 0.1
mg/kg Group (Top Right): Treatment with a low concentration of Gemcitabine (0.1 mg/kg) resulted in
observable changes. The smear shows signs of hypocellularity (reduced cellularity) compared to the
control, suggesting an initial suppressive effect on the hematopoietic tissues. There is an increased
presence of extravasated blood (hemorrhage/red areas) and potentially signs of damage to the stromal or
vascular components.

GEM 0.3 mg/kg Group (Bottom Center): The high concentration of Gemcitabine (0.3 mg/kg) induced
severe alterations. The smear demonstrates a marked decrease in overall cellularity and severe
myelosuppression. The field is dominated by a diffuse, often homogenous red background, indicative of
extensive hemorrhage and/or a profound reduction in hematopoietic cell populations (aplasia or severe
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hypoplasia). This concentration clearly demonstrates a dose-dependent toxic effect of Gemcitabine on the
highly proliferative bone marrow tissue.

Control GEM 0.1

GEM 0.3

Figure 1. The Effect of Gemcitabine on Rabbit Bone Marrow Morphology: Comparison of 0.1 and
0.3 mg/kg Treatment Groups with Control".

The data presented in (Table 1) demonstrate a clear dose-dependent hematological suppression following
gemcitabine administration in rabbits. Total WBC count declined from 7.1 + 0.18 x103/uL in the control
group to 5.0 + 0.08 x10%/uL at 0.1 mg/kg and further to 4.4 + 0.20 x103/uL at 0.3 mg/kg (p = 0.000),
indicating pronounced leukopenia associated with bone marrow suppression. Lymphocyte percentage
followed a similar pattern, decreasing from 63.6 £ 2.6% in controls to 62.3 + 0.21% at the lower dose and
markedly to 52.9 + 1.37% at the higher dose (p = 0.000). This reduction suggests impaired lymphocyte
production or accelerated turnover in response to gemcitabine-induced cytotoxicity. MID% also dropped
significantly, declining from 10.2 £ 0.48% in the control group to 7.8 + 0.29% at 0.1 mg/kg and 7.5 +
0.02% at 0.3 mg/kg (p = 0.000).

A comparable trend was observed in granulocytes, which decreased from 12.3 £ 0.66% in controls to 10.6
+ 0.76% and 9.8 £ 0.5% in the low- and high-dose groups, respectively. Red blood cell counts showed
substantial reductions, falling from 6.0 £ 0.15 x10¢/uL in the control rabbits to 5.0 = 0.05 x10¢/uL at 0.1
mg/kg and reaching 3.9 = 0.26 x10°/uL at 0.3 mg/kg (p = 0.000). This indicates significant inhibition of
erythropoiesis. Platelet counts exhibited the most severe suppression, decreasing from 435.19 + 21.09
x10%/uL in the control group to 301.86 + 7.94 x10%/uL at the lower dose and dramatically to 146.6 + 21.01
x10%/uL at the higher dose (p = 0.000). This pronounced thrombocytopenia reflects strong inhibitory
effects of gemcitabine on megakaryocyte activity. Overall, the numerical values clearly demonstrate that
gemcitabine induces significant, dose-dependent reductions across all major hematological parameters,
confirming its potent myelosuppressive activity in rabbits.

Table 1. Complete Blood Count Parameters in Rabbits Treated with Gemcitabine (0.1 and 0.3
mg/kg) Compared to the Control Group.

Parameter Experimental groups
Control Gemcitabine 0.1 | Gemcitabine 0.3 P-Value

White blood cells (WBC) 7.140.182 5.0+ 0.08b 4.4+ 0.20° 0.000
x103(ul)

Lymphocytes (LYM) % 63.6+ 2.62 62.3+ 0.211b 52.9+1.37b 0.000

Middle Cells Cells (MID) % 10.2+ 0.482 7.8+ 0.29b 7.5+ 0.02°P 0.000

Granulocytes (GRAN) % 12.3+ 0.662 10.6+ 0.76P 9.8+ 0.5b 0.000

Red blood cells *(RBCs) 6.0+0.152 5.0+ 0.05b 3.9+ 0.26b 0.000
x106 (ul)

Platelet x1073/ulL 435.19 £21.092 301.86+ 7.94b 146.6+ 21.01¢ 0.000

Values are expressed as means + SE; n = 5 for each treatment group. Mean values within a row not sharing a common
superscript letter (a, b, c) were significantly different, p<0.05.

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0
Received: 15-09-2025 - Accepted: 16-11-2025 - Published: 23-11-2025 2652


https://doi.org/10.54361/ajmas.258479

Algalam Journal of Medical and Applied Sciences. 2025;8(4):2650-2655
https://doi.org/10.54361/ajmas.258479

Discussion

The findings of the present study clearly demonstrate that gemcitabine (GEM) administration in New
Zealand White rabbits’ results in significant hematological toxicity, characterized by both morphological
damage to the bone marrow and a profound reduction in peripheral blood cell counts. The
histopathological examination of the bone marrow smears (Figure 1) showed a severe dose-dependent
hypocellularity in both treatment groups compared to the normocellular control. This morphological
evidence of myelosuppression was substantiated by the Complete Blood Count (CBC) analysis (Table 1),
which revealed a statistically significant decrease (P=0.000) across all measured parameters, including
WBCs, Granulocytes, Lymphocytes, and RBCs. This collective reduction in all major hematopoietic
lineages in the peripheral blood is consistent with pancytopenia and directly reflects the profound
inhibitory effect of gemcitabine on the hematopoietic tissue [18].

Gemcitabine, as a deoxycytidine analog, is a potent S-phase-specific inhibitor, primarily targeting cells
undergoing active DNA synthesis [19]. The bone marrow is one of the most highly proliferative tissues in
the body, making it exceptionally vulnerable to the cytotoxic action of GEM. Our results align perfectly
with this known mechanism: the hypocellularity observed in the marrow is the direct consequence of
GEM's ability to destroy progenitor cells and disrupt the differentiation and maturation of rapidly dividing
hematopoietic cells [20]. Furthermore, the dose-dependent nature of the toxicity is evident, as the high
concentration (0.3 mg/kg) induced notably lower cell counts and more severe morphological damage
compared to the 0.1 mg/kg dose, confirming the established pharmacokinetic characteristics of the drug
[21-30]. The presence of hemorrhage is critical, as it suggests a compromise of marrow integrity, possibly
exacerbated by drug-induced thrombocytopenia (though platelet count was not directly measured; it is
often co-reduced) [31-53].

Conclusion

In summary, this study utilizes a correlative approach to demonstrate that the hematological toxicity of
Gemcitabine in the rabbit model is the direct consequence of dose-dependent, severe myelosuppression.
The clear visual evidence of hypocellularity and hemorrhage in the bone marrow smears provides a crucial
morphological link to the observed peripheral cytopenias. These findings reinforce the clinical
understanding that myelosuppression is the primary dose-limiting toxicity of Gemcitabine and highlight the
necessity for continuous hematological monitoring during treatment to mitigate the associated risks of
severe neutropenia and anemia.
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