Original article

Impact of Garbage Burners on Organic Compound Levels in Atmospheric Air Samples from El Bayda, Libya

Rwaida Ashghila¹, Hamad Hasan*²

¹Department of Environmental Science, Basic Science School, Higher Academy of post-graduate studies, Al-Gabal Al-Akhder, Libya

²Department of Chemistry, Faculty of Science, Omar Al-Mukhtar University, El Bayda, Libya **Email:** hamad.dr@omu.edu.ly

Abstract

This study was conducted to identify and estimate organic compounds in composite air samples from several areas in the city of El Bayda (Libya). Samples were collected from (10) different sites within and around the city during the summer of 2024. Gas Chromatography-Mass Spectrometry (GC-MS) technique was used to measure and identify the types of organic compounds suspended in the air and the effect of garbage fires on them. The results of this study showed the presence some aliphatic and aromatic hydrocarbons and can be summarize as following: Ethylene oxide, Methylene chloride, 2, 4-dimethyl pentane, 2, 2-dimethylpentane, 2 methyl-Hexane, 3methylhexane, 1, 2-bis(trimethylsilyl)benzene, methyl Cyclopentane, Methylene chloride, 2isopropoxyethylamine, Propane, 1-benzazirene-1-carboxylic acid, and other different organic compounds. The total organic Hydrocarbon compounds in the ten studied locations inside and around El-Bayda city were as follows: 75.29, 45.90, 82, 25, 59.65, 13.54, 53.47, 81.65, 216.75, 45.72, and 39.35 μg/g. The study also showed variations in the detected compounds along the studied locations. The results indicated that the total hydrocarbon contents at some locations included some compounds, but were not recorded at these locations. The findings of this study concluded that the presence of organic compounds in the samples from the study area may be due to garbage fires near the city.

Keywords: Hydrocarbons, GC-Mass, Garbage Fires, Atmosphere City, Libya.

Introduction

Air pollution is among the major environmental health risk factors, estimated to cause between four and nine million deaths globally. Among the organic chemicals present in the air, some Polycyclic Aromatic Hydrocarbons (PAHs) are believed to possess the highest toxic potential in terms of cytotoxicity, mutagenicity, and carcinogenicity [1]. High molecular weight PAHs containing five or more aromatic rings are found primarily associated with particulate matter, while smaller PAHs containing four or fewer aromatic rings are found to a greater extent in the gas phase [2]. However, due to their higher total concentrations in air compared to larger PAHs, low molecular weight PAHs nevertheless tend to be the dominant particle-associated PAHs [3]. Levels of particulate-associated phenanthrene and pyrene from diesel exhaust and wood smoke typically exceed the carcinogenic benzo(a)pyrene benchmark level by orders of magnitude. The relative quantity of particle-associated PAHs depends on the source, but is also significantly influenced by temperature [4]. Consequently, particle-associated PAH levels during winter may be up to ten times higher compared to summer, when the more volatile PAHs evaporate to a greater extent and exist in the gas phase.

Although indoor sources also contribute to total airborne PAH exposure, indoor air is often influenced by outdoor sources [5]. The objective of this study is to determine the types and concentrations of hydrocarbon substances emitted from waste burning in some areas within Al Bayda city, and to compare the obtained results with air samples from some other cities. In Libya some studies were carried to estimate the hydrocarbon levels in different samples by used GC-Mass [6-14], the environmental studies were established for determine heavy metals [15-44], plants [45-76], beside many of studies attempted the treatment of different wastes [77-85], radioactive elements [86-88], pesticides [89], Most of these studies recorded high pollutants levels the studies samples causing by human activities

Methods

Description of the Study Area

Samples were collected from various locations in Al Bayda, including sites near the landfill and other scattered areas within the city. A total of 10 sites were selected at different distances from El-Bayda city (Figure 1), showing the position of El-Bayda city on the Libyan map.

Sample Collection

The study area was divided into 10 sites, including several locations in and around El Bayda city, as shown in Figures 2-4 and Table 1.

Figure 1. Position of El-Bayda city on the Libya map

Table 1. The sample locations

Location	Simple No.
1	Near landfill
2	Near landfill
3	Near landfill
4	Near landfill
5	Rafi' al-Ansari
6	Bo-habib
7	Wardamah
8	Bo-Sultan
9	Al-Dhaman
10	Sport City

Figure 2. The locations of study (El-Bayda City)

Figure 3. The accumulation of garbage in some residential neighborhoods of El Bayda city, Libya.

Figure 4. The garbage fire of some study locations.

Sample Preparation Methods

Modified air sample collections were used in this study. A plastic pipe (1 M) length) with aluminum gauze fixed on the inside of it, then a small piece of white cloth (25 cm x cm was placed on the gauze. The equipment was left for some days at the studied locations (10 sites were selected in this study around the city). After that, each sample was placed in distilled water for 24 hours, followed by filtration of each sample and placing it in a sealed sterile container with the sample number recorded. The samples were then taken to the laboratory to identify the hydrocarbon substances therein.

Hydrocarbon Compound Measurement Methods

Sample concentrations were measured using Gas Chromatography (GC-MS) techniques, Perkin Elymnar model (At Alexandria University, Egypt), according to methods described by previous studies [7-12].

Results

Tables 2-11 indicate the types and concentrations of hydrocarbon compounds in the study area samples. The following compounds were recorded

Table 2. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (1)

Compound's name	Concentration (µg/g)
Ethylene oxide	0.40
Methylnitroso -Carbamic acid	0.29
2-propoxy-Ethanamine	0.25
Methylene chloride	7.28
Hexane	34.10
2,2-dimethyl-Pentane,	2.28
Methyl Cyclopentane	12.86
2-methyl -Hexane	0.26
, 3-methyl Hexane	0.18
1-Hexanamine, N-nitro	0.15
Benzenemethanamine,N(phenylmet	0.19
Silane, 1,4-phenylenebis [trimethyl-	13.09
4Methyl-2-trimethylsilyloxy-ace	1.88
1,1,1,3,5,5,5-Heptamethyltrisilo	0.68
1,2-Bis(trimethylsilyl)benzene	0.92
Trimethyl [4-(2-methyl-4-oxo-2-pe	0.48
Total	75.29

Table 3. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (2)

Tuble 6. Concentrations (µg/g) of figurecurbon compounts at Site No. (2)	
ppm Concentration	
0.52	
1.48	
3.76	
2.76	
7.71	
0.3	
0.19	
0.14	
0.12	

N.Ethylformamide	0.20
hexamethyl-Cyclotrisiloxane	0.31
2-(trimethylsilo Propiophenone	11.70
1,4-phenylenebis[trimethyl-Silane]	16.31
Total	45.5

Table 4. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (3)

Compound's name	Concentration (µg/g)
2-Isopropoxyethylamine	13.83
Ethylene oxide	13.32
1-Tetradecanamine	21.19
Cis- Aconitic anhydride	12.47
Nonadecylamine	10.16
2-(3-Methylguanidino) ethanol	2.72
decamethyl, Tetrasiloxane	8.56
Total	82.25

Table 5. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (4)

Table 3. Concentrations (µg/g) of Hydrocarbon Compounts at Site No. (4)	
Compound's name	Concentration (μg/g)
, 5,5-dichloro-4-Spirohexanone	0.36
Oleylamine	0.25
0-2-pentylhdorxylamine	0.2
, dihydro-3-methyl 2,5-Furandione	0.15
Cis-Aconitic anhydride	0.27
4-Bromo-N-[(2-pyridyl)aminomethy	0.60
Taurolidine	0.84
1,1,3,3,5,5,7,7,9 Octasiloxane	18.98
1-Benzazirene-1-carboxylic acid	2.73
2-(trimethylsilo Propiophenone,	35.27
Total	59.65

Table 6. Concentrations ($\mu g/g$) of Hydrocarbon Compounds at Site No. (5)

Compound's name	Concentration (µg/g)
Ethylene oxide	2.80
S-[2-(acety],2-Butenethioic acid	1.49
3-Butyn-1-ol	0.32
Methylene Chloride	6.19
Acetic acid, trifluoro-ethyl e.	0.17
Ethyl chloride	1.72
2-Isopropoxyethylamine	0.64
0-2-Pentylhydroxylamine	0.21
Total	13.54

Table 7. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (6)

= azet it certecite access (pg/g) of ==garetar zero conference ac zero (e)	
Compound's name	Concentration (μg/g)
Taurolidine	12.54
2-Fluorobetaalanine	10.23
Ethylamine	10.81
Propane	0.32
dihydro-3-methyl ,2,5-Furandione	19.57
Total	53.47

Table 8. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (7)

Compound's name	Concentration (μg/g)
2-methyl-Hexane	14.67
tetrahydro-2,5-dimethyl-Furan	13.96
2,2-dimethyl-oxime, Propanal	17.63
tetrahydro-,2-Furanmethanamine	8.62
, 3-propoxy-1-Propanamine	1.93

Propanal	1.41
1-(3-ethyloxiranyl)-Ethanone	1.12
, 3-methyl-Pyrrolidine	0.58
1-aminomethyl-Cyclododecanol	2.65
4,6-dimethoxy-5-nitro-Pyrimidine	12.36
1,2-Benzenedicarboxylic	6.72
Total	81.65

Table 9. Concentrations (µg/g) of Hydrocarbon Compounds at Site No. (8)

Compound's name	Concentration (µg/g)
, dihydro-3-methyl 2,5-Furandione	216.73
Total	216.73

Table 10. Concentrations of Hydrocarbon Compounds at Site No. (9)

Compound's name	Concentration (µg/g)
2-methoxy-Ethanamine	0.99
heptyl, Hydroperoxide	5.52
Glycine, ethyl ester	3.79
, 2-methyl-1-Butanamine	1.34
6-amino-1-Hexanol	2.92
2-Ethoxyethylamine	1.66
Diethyl azodicarboxylate	6.98
Propyne	2.10
Silane	2.40
6-amino-Hexanenitrile	1.63
2-Chloroethylamine	0.87
nitro-Ethane	2.00
2-Chloroethanol	1.68
1,2-Ethanediol	1.81
3-Aminopropionitrile	1.90
Isobutylamine	1.61
2,6-dimethoxy-5-nitro-Pyrimidine	0.72
dihydro-3-methyl2,5-Furandione	2.13
2-methyl-Adenosine	3.67
Total	45.72

Table 11. Concentrations ($\mu g/g$) of Hydrocarbon Compounds at Site No. (10)

Compound's name	ppm Concentration
4,6-dimethoxy-5-nitro-Pyrimidine	0.10
1,2-Ethanediol	0.12
2,4,6(1H,3H,5H)-Pyrimidinetrione	1.78
2H-1,4-Benzodiazepin-2-one,7-ch	0.83
-Cyclooctasiloxane hexadecamethyl	0.93
dodecamethyl-Pentasiloxane	0.82
1,1,3,3,5,5,7,7,9Heptasiloxane	2.63
,1,1,3,3,5,5,7,7,9,Octasiloxane	29.02
2-carboxylic acid, 6-1H-Indole	1.09
1-Benzazirene-1-carboxylic acid,	2.26
Total	39.58

Discussion

In this study, which was carried out on some air samples collected from locations inside and around El-Beida city, the hydrocarbon compounds that may be detected using a GC-Mass instrument. The results recorded different hydrocarbon compounds in the studied locations. The highest concentrations were recorded at Site (7) with a value of (216.73 μ g/g), and the lowest concentrations (13.54 μ g/g). Generally, total hydrocarbon compound concentrations ranged between (216.73-13.54 μ g/g). The concentrations of compounds recorded in this study were as follows: Ethylene Oxide: Highest concentration at Site 3 (13.32), while at Site 5 it was (2.80), and equally at Site 4 (2.80). Lowest concentration at Site 2 (0.52). Not detected at other sites, the types of hydrocarbons detected in this study can be shown as follows: Hexane: Highest concentration at Site (1) at (34.10 μ g/g). Not detected at other sites. Methylene Chloride: Highest concentration at Site (1) at (7.28), while at Site (5) it was (6.19) and at Site (2) (1.48). Not detected at remaining the sites.

Carbamic Acid Methylnitroso: Highest concentration at Site (1) at (0.29). Not detected at other sites. Ethanamine, 2-propoxy: Highest concentration at Site (1) at (0.25). Not detected at other sites. Pentane, 2, 2-dimethyl-: Highest concentration at Site (2) at (2.76), and at Site (1) it was (2.28). Not detected at other sites. Cyclopentane, methyl: Highest concentration at Site (1) at (12.86 µg/g), while at Site (2) it was (7.71). Not detected at other sites. Hexane, 2-methyl: Highest concentration at Site (7) at (14.67), at Site (2) (0.3), and at Site 1 (0.26). Not detected at other sites. Hexane, 3-methyl-: Highest concentration at Site (2) at (0.19), while at Site (1) it was (0.18). Not detected at other sites. 1-Hexanamine, N-nitro-: Highest concentration at Site (1) at (0.15). Not detected at other sites. Benzenemethanamine, N(phenylwet): Highest concentration at Site (1) at (0.19). Not detected at other sites. Silane, 1,4-phenylenebis[trimethyl-]: Highest concentration at Site (2) at (16.31), while at Site (1) it was (13.09). Not detected at other sites. 4-Methyl-2-trimethylsilyloxy-ace: Highest concentration at Site (1) at (1.88). Not detected at other sites. Pentane, 2,4-dimethyl-: Highest concentration at Site (2) at (3.76). Not detected at other sites. Azetidine: Highest concentration at Site (2) at (0.14). Not detected at other sites. Benzenebutanamine: Highest concentration at Site (2) at (0.12). Not detected at other sites. N-Ethylformamide: Highest concentration at Site (2) at (0.2). Not detected at other sites. Cyclotrisiloxane, hexamethyl-: Highest concentration at Site (2) at (0.31). Not detected at other sites. Propiophenone, 2-(trimethylsilo: Highest concentration at Site (2) at (11.70). Not detected at other sites.

N-Ethylformamide: Highest concentration at Site (2) at (0.20). Not detected at other sites. 2-Isopropoxyethylamine: Highest concentration at Site (3) at (13.83). Not detected at other sites. 1-Tetradecanamine: Highest concentration at Site (3) at (21.19). Not detected at other sites. Cis-Aconitic anhydride: Highest concentration at Site (3) at (12.47), and at Site (4) (0.27). Not detected at other sites. Nonadecylamine: Highest concentration at Site (3) at (10.16). Not detected at other sites. 2-(3-Methylguanidino) ethanol: Highest concentration at Site (3) at (2.72). Not detected at other sites. Tetrasiloxane, decamethyl: Highest concentration at Site (3) at (8.56). Not detected at other sites. 2,5-Furandione, dihydro-3-methyl: Highest concentration at Site (8) at (216.73), while at Site (6) it was (19.57), at Site (9) (2.13), and at Site (4) (0.15). Not detected at other sites. O-2-Pentylhydroxylamine: Highest concentration at Site (5) at (0.21), while at Site (4) it was (0.2). Not detected at other sites. Oleylamine: Highest concentration at Site (4) at (0.25). Not detected at other sites.

4-Spirohexanone,5,5-dichloro: Highest concentration at Site (4) at (0.63). Not detected at other sites. 4-Bromo-N-[(2-pyridyl) aminomethyl: Highest concentration at Site (4) at (0.6). Not detected at other sites. Taurolidine: Highest concentration at Site (6) at (12.54), while at Site (4) it was (0.84). Not detected at other sites. Octasiloxane1,1,3,3,5,5,7,7,9: Highest concentration at Site (10) at (29.02), while at Site (4) it was (18.98). Not detected at other sites. 1-Benzazirene-1-carboxylic acid: Highest concentration at Site (4) at (2.73), while at Site (10) it was (2.26). Not detected at other sites. Propiophenone, 2-(trimethylsilo: Highest concentration at Site (4) at (35.27). Not detected at other sites. 2-Butenethioic acid, S-[2-(acety: Highest concentration at Site (5) at (1.49). Not detected at other sites. 3-Butyn-1-ol: Highest concentration at Site (5) at (0.32). Not detected at other sites. Acetic acid, trifluoro-ethyle... Highest concentration at Site (5) at (0.9). Not detected at other sites. Ethyl chloride: Highest concentration at Site (5) at (1.72). Not detected at other sites. 2-Isopropoxyethylamine: Highest concentration at Site (5) at (0.64). Not detected at other sites. 2-Fluoro-β-alanine: Highest concentration at Site (6) at (10.23). Not detected at other sites. Ethylamine: Highest concentration at Site (6) at (10.23). Not detected at other sites. Propane: Highest concentration at Site (7) at (1.41), while at Site (6) it was (0.32). Not detected at other sites. Furan, tetrahydro-2,5-dimethyl-: Highest concentration at Site (7) at (13.96). Not detected at other sites. Propanal, 2,2-dimethyl-oxime: Highest concentration at Site (7) at (17.63). Not detected at other sites. 2-Furanmethanamine, tetrahydro-: Highest concentration at Site (7) at (8.62). Not detected at other sites. 1-Propanamine, 3-propoxy-: Highest concentration at Site (7) at (1.93). Not detected at other sites. Ethanone, 1-(3-ethyloxiranyl)-: Highest concentration at Site (7) at (1.12). Not detected at other sites. Pyrrolidine,3-methyl-: Highest concentration at Site (7) at (0.58). Not detected at other sites. Cyclododecanol, 1-aminomethyl-: Highest concentration at Site (7) at (2.65). Not detected at other sites. Pyrimidine, 4,6-dimethoxy-5-nitro-: Highest concentration at Site (7) at (12.36), while at Site (10) it was (0.10). Not detected at other sites.

1, 2-Benzenedicarboxylic, mo: Highest concentration at Site (7) at (6.72). Not detected at other sites. Ethanamine, 2-methoxy-: Highest concentration at Site (9) at (0.99). Not detected at other sites. Hydroperoxide, heptyl: Highest concentration at Site (9) at (5.52). Not detected at other sites. Glycine, ethylester: Highest concentration at Site (9) at (3.79). Not detected at other sites. 1-Butanamine, 2-methyl-:

Highest concentration at Site (9) at (1.34). Not detected at other sites. 1-Hexanol, 6-amino-: Highest concentration at Site (9) at (2.92). Not detected at other sites. 2-Ethoxyethylamine: Highest concentration at Site (9) at (1.66). Not detected at other sites. Diethyl azodicarboxylate: Highest concentration at Site (9) at (6.98). Not detected at other sites. Propyne: Highest concentration at Site (9) at (2.10). Not detected at other sites. Silane: Highest concentration at Site (9) at (2.40). Not detected at other sites. Hexanenitrile, 6amino-: Highest concentration at Site (9) at (1.63). Not detected at other sites. 2-Chloroethylamine: Highest concentration at Site (9) at (0.87). Not detected at other sites. Ethane, nitro-: Highest concentration at Site (9) at (2.00). Not detected at other sites. 2-Chloroethanol: Highest concentration at Site (9) at (1.68). Not detected at other sites. 1, 2-Ethanediol: Highest concentration at Site (9) at (1.81). Not detected at other sites. 3-Aminopropionitrile: Highest concentration at Site (9) at (1.90). Not detected at other sites. Isobutylamine: Highest concentration at Site (9) at (1.61). Not detected at other sites. Pyrimidine, 2, 6-dimethoxy-5-nitro: Highest concentration at Site (9) at (0.72). Not detected at other sites. Adenosine, 2-methyl-: Highest concentration at Site (9) at (3.69). Not detected at other sites. 1,2-Ethanediol: Highest concentration at Site (10) at (0.12). Not detected at other sites. 2,4,6 (1H,3H,5H)-Pyrimidinetrione: Highest concentration at Site (10) at (1.78). Not detected at other sites. 2H-1, 4-Benzodiazepin-2-one, 7-ch: Highest concentration at Site (10) at (0.83). Not detected at other sites. Cyclooctasiloxane, hexadecamethyl: Highest concentration at Site (10) at (0.93 µg/g). Not detected at other sites. Pentasiloxane, dodecamethyl-: Highest concentration at Site (10) at (0.82). Not detected at other sites. Heptasiloxane, 1,1,3,3,5,5,7,7,9...: Highest concentration at Site (10) at (2.63). Not detected at other sites. 1H-Indole-2-carboxylic acid, 6-(..: Highest concentration at Site (10) at (1.09). Not detected at other sites. It was reported that the main sources of hydrocarbon compounds in the air are coming from human activities, such as fuel combustion, industries, waste from manufactories, and others. Some studies also revealed that the presence of hydrocarbon compounds in the air samples located in cities is mainly due to garbage fires, especially in countries that don't use or have waste treatment. In Libya, the waste and garbage of citizens in the cities don't have any treatment or recycling protocol; therefore, most of the cities' garbage is burned at locations near these cities. However, most of the dust in the air samples is coming from the garbage burners [2-5].

Conclusion

According to the results recorded in this study, different types and contents of hydrocarbons were detected in the air samples collected from different locations inside and around El-Baida city. The study declared that the main sources of these compounds are mainly from the burning of garbage in cities.

Acknowledgment

The authors highly appreciated the collaboration of the central lab of chemical analysis, Chemistry department, Faculty of Science, Omar Al-Mukhtar University, Libya.

Conflict

The authors provided that there is no conflict in the results recorded in this study.

References

- 1. Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci. 2017;18(2):243.
- 2. Bünger J, Krahl J, Schröder O, Schmidt L, Westphal GA. Potential hazards associated with combustion of bioderived versus petroleum-derived diesel fuel. Crit Rev Toxicol. 2012;42(9):732-50.
- 3. Schwarze PE, Øvrevik J, Hetland RB, Becher R, Cassee FR, Låg M, et al. Importance of size and composition of particles for effects on cells in vitro. Inhal Toxicol. 2007;19(1):17-22.
- 4. Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15(1):1-21.
- 5. Låg M, Øvrevik J, Refsnes M, Holme JA. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res. 2020;21(1):299.
- 6. Hamad IH, Nuesry MS. Poly cyclic hydrocarbons levels in some fishes tissues collected from Derna City (Libya) Coast. In: International conference on chemical, agricultural and medical sciences; 2014 Dec 4-5; Antalya, Turkey. 2014. p. 52-6.
- 7. Hamad MAH, Mounera AAE, Baseet ESM, Eman E, Al-Badri M. Identification and detection aromatic and aliphatic hydrocarbons in Epinephelus Marginatus fish samples collected from Benghazi coast. Int J Adv Multidiscip Res Stud. 2023;6(3):107-13.
- 8. Mohammed A, Hamad MAH, Mounera AAE, Eman IHE. Extraction and identification of aliphatic hydrocarbons in marine sediment samples at Benghazi city and Dyriana town coasts (Libya). J Res Humanit Soc Sci. 2023;11(10):168-74.
- 9. Hasan MAH, Muftah HS, Abdelghani KA, Saad SI. Poly aromatic hydrocarbon concentrations in some shell samples at some Tobrouk city coast regions: could oil industry be significantly affecting environment. Ukr J Ecol. 2022;12(3):21-8.
- 10. Habel AMA, Mohamed NIH, Mohammed MA, Hamad MAH. The levels and sources of aliphatic and polycyclic aromatic hydrocarbons in blue runner fish from Benghazi coast, Libya. Afr J Biol Sci. 2024;6(3):1-10.

- 11. Hasan HMI, Mohamad ASA. A study of aliphatic hydrocarbons levels of some waters and sediments at Al-Gabal Al-Akhder coast regions. Int J Chem Sci. 2013;11(2):833-49.
- 12. Salem GM, Aljidaemi FF, Hwisa SA, Hamad MIH, Zaid AA, Amer IO. Occupational exposure to benzene and changes in hematological parameters in East Tripoli, Libya. Nanotechnol Percept. 2024;20(S5):358-64.
- 13. Habil Z, Ben arous N, Masoud N, Hasan H. Using GC-mass method for determination hydrocarbon compounds in some vegetable samples at Derna city, Libya. Libyan Med J. 2025;17(3):374-83.
- 14. Hasan H, Habil Z, Ben arous N. Estimate the types and contents of phenolic acid in C.Paviflorus lam and C.salviiflolius L plants growing at Al –Gabal Al-hder regions. AlQalam J Med Appl Sci. 2025;8(3):1646-56.
- 15. Hamad MIH, Islam M. The concentrations of some heavy metals of Al-Gabal Al-Akhdar Coast Sediment. Arch Appl Sci Res. 2010;2(6):59-67.
- 16. Hasan JA, Hasan HMA. Potential human health risks assessment through determination of heavy metals contents in regularly consumed yogurta in Libya. World J Pharm Pharm Sci. 2024;13(12):100-12.
- 17. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. Arab J Chem. 2016;9(S2):S1590-6.
- 18. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad IH. Heavy metals accumulation in sediments of Alexandria coastal areas. Bull Fac Sci Alex Univ. 2012;47(1-2):12-28.
- 19. Mamdouh SM, Wagdi ME, Ahmed MA, Hamad MIH. Chemical studies on Alexandria coast sediment. Egypt Sci Mag. 2005;2(4):93-102.
- 20. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad MIH. Distribution of different metals in coastal waters of Alexandria, Egypt. Egypt Sci Mag. 2010;7(1):1-19.
- 21. Mohamed AE, Afnan SA, Hamad MA, Mohammed AA, Mamdouh SM, Alaa RE, et al. Usage of natural wastes from animal and plant origins as adsorbents for the removal of some toxic industrial dyes and heavy metals in aqueous media. J Water Process Eng. 2023;55:104192.
- 22. Mohamed HB, Mohammed AZ, Ahmed MD, Hamad MAH, Doaa AE. The heavy metal pollution and associated toxicity risk assessment in Ajdabiya and Zueitina, Libya. Sci J Damietta Fac Sci. 2024;14(1):16-27.
- 23. Nabil B, Hamad H, Ahmed E. Determination of Cu, Co and Pb in selected frozen fish tissues collected from Benghazi markets in Libya. Chem Methodol. 2018;2:56-63.
- 24. Wesam FAM, Hamad MAH. Detection of heavy metals and radioactivity in some bones of frozen chicken samples collected from Libyan markets. Int J Adv Multidiscip Res Stud. 2023;3(3):761-4.
- 25. Wesam FAM, Hamad MAH. Study the accumulation of minerals and heavy metals in Ulva algae, Cladophora, Polysiphonia and Laurencia algae samples at eastern north region of Libya coast. GSC Biol Pharm Sci. 2023;23(3):147-52.
- 26. Citrine E, Hamad H, Hajer Af. Contents of metal oxides in marine sediment and rock samples from the eastern Libyan coast, utilizing the X-ray method. AlQalam J Med Appl Sci. 2015;1(1):1316-21.
- 27. Hanan MA, Hamida E, Hamad MAH. Nitrogen, phosphorus and minerals (Sodium, Potassium and Calcium) contents of some algae's species (Anabaena and Spirulina platensis). Int J Curr Microbiol App Sci. 2016;5(11):836-41.
- 28. Mardhiyah F, Hamad H. Assessment of the contamination by heavy metals in the Al-Fatayeh Region, Derna, Libya. AlQalam J Med Appl Sci. 2025;8(3):1081-91.
- 29. Abdelrazeg A, Khalifa A, Mohammed H, Miftah H, Hamad H. Using melon and watermelon peels for the removal of some heavy metals from aqueous solutions. AlQalam J Med Appl Sci. 2025;8(3):787-96.
- 30. Abdul Razaq A, Hamad H. Estimate the contents and types of water well salts by the Palmer Roger model affecting the corrosion of Al-Bayda city (Libya) network pipes. AlQalam J Med Appl Sci. 2025;8(3):744-53.
- 31. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation, X-ray fluorescence scanning, and flame photometer analysis for sediments and rock samples of Al-Gabal Al-Akhder coast region (Libya). IOSR J Appl Chem. 2021;14(4):20-30.
- 32. ALambarki M, Hasan HMA. Assessment of the heavy metal contents in air samples collected from the area extended between Albayda and Alquba cities (Libya). AlQalam J Med Appl Sci. 2025;8(3):695-707.
- 33. Al-Nayyan N, Mohammed B, Hamad H. Estimate of the concentrations of heavy metals in the and some plant samples collected from (near and far away) of the main road between Al-Bayda city and Wadi Al-Kouf region. AlQalam J Med Appl Sci. 2025;8(3):816-26.
- 34. Hasan HMI. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria [Doctoral dissertation]. [Alexandria, Egypt]: Alexandria University; 2006.
- 35. Hamad MAH, Hager AA, Mohammed EY. Chemical studies of water samples collected from area extended between Ras Al-Halal and El Haniea, Libya. Asian J Appl Chem Res. 2022;12(3):33-46.
- 36. Hamad M, Mohammed AA, Hamad MAH. Adsorption and kinetic study for removal some heavy metals by use in activated carbon of sea grasses. Int J Adv Multidiscip Res Stud. 2024;4(6):677-85.
- 37. Hamad MAH, Hamad NI, Mohammed MYA, Hajir OAA, Al-Hen dawi RA. Using bottom marine sediments as environmental indicator state of (Tolmaitha Toukra) region at eastern north coast of Libya. Sch J Eng Tech. 2024;2(14):118-32.
- 38. Hamad MIH. The heavy metals distribution at coastal water of Derna city (Libya). Egypt J Aquat Res. 2008;34(4):35-52.
- 39. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. EPH Int J Appl Sci. 2016;2(2):24-7.
- 40. Hamad MAH, Hussien SSM, Basit EEM. Accumulation of some heavy metals in green algae as bio indicators of environmental pollution at Al-Haniea region: Libya coastline. Int J Adv Multidiscip Res Stud. 2024;4(5):188-90
- 41. Hamad MIH, Ahmed MA. Major cations levels studies in surface coastal waters of Derna city, Libya. Egypt J Aquat Res. 2009;35(1):13-20.

- 42. Hamad MIH, Masoud MS. Thermal analysis (TGA), diffraction thermal analysis (DTA), infrared and X-rays analysis for sediment samples of Toubrouk city (Libya) coast. Int J Chem Sci. 2014;12(1):11-22.
- 43. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. J Rad Nucl Appl. 2024;9(1):47-51.
- 44. Hasan HAH. Estimate lead and cadmium contents of some archeological samples collected from ancient cities location (Cyrene and Abolonia) at Al-Gabal Al-Akhder Region, Libya. Univ J Chem Appl. 2021;12(21):902-7.
- 45. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity and GC-MS analysis of chloroform extract of bark of the Libyan Salvia fruticosa Mill. Int J Multidiscip Sci Adv Technol. 2021;1(1):715-21.
- 46. Aljamal MA, Hasan HM, Al Sonosy HA. Antibacterial activity investigation and anti-biotic sensitive's for different solvents (Ethanol, propanol, DMSO and di El er) extracts of seeds, leafs and stems of (Laurus azorica and Avena sterilis) plants. Int J Curr Microbiol App Sci. 2024;13(11):175-90.
- 47. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and determination of Beta carotene content in carrots and tomato samples collected from some markets at ElBeida City, Libya. EPH Int J Appl Sci. 2019;1(1):105-10.
- 48. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. J Nat Prod Plant Resour. 2011;1(1):15-23.
- 49. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. The Anti-Cancer, Anti-Inflammatory, Antibacterial, Antifungal, Anti-Oxidant and phytochemical investigation of flowers and stems of Anacyclus Clavatus plant extracts. AlQalam J Med Appl Sci. 2025;8(3):415-27.
- 50. Hasan H, Zuhir A, Shuib F, Abdraba D. Phytochemical investigation and exploring the Citrullus Colocynthis extracts as antibacterial agents against some gram and negative bacteria species. AlQalam J Med Appl Sci. 2025;8(3):392-400.
- 51. MdZeyaullah R, Naseem A, Badrul I, Hamad MI, Azza SA, Faheem AB, et al. Catechol biodegradation by Pseudomonas strain: a critical analysis. Int J Chem Sci. 2009;7(3):2211-21.
- 52. El-Mehdawy MF, Eman KS, Hamad MI, Hasan H. Amino acids contents of leafs and stems for two types of herbal plants (Marjoram and Hybrid tea rose) at AL-Gabal AL-Akhder region. Der Pharma Chem. 2014;6(6):442-7.
- 53. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acid contents of leafs and stems for three types of herbal plants at Al-Gabal Al-Akhder region. World J Chem. 2014;9(1):15-9.
- 54. Hamad MH, Noura AAM, Salem AM. Phytochemical screening, total phenolic, anti-oxidant, metal and mineral contents in some parts of plantago Albicans grown in Libya. World J Pharm Res. 2024;13(3):1-17.
- 55. Anees AS, Hamad MIH, Hasan H, Mojahidul I. Antifungal potential of 1,2-4triazole derivatives and therapeutic efficacy of Tinea corporis in albino rats. Der Pharm Lett. 2011;3(1):228-36.
- 56. Hamad Hasan, Marwa Mohammed, Amal Haroon. Determining the contents of antioxidants, total phenols, carbohydrate, total protein, and some elements in Eucalyptus gomphocephala and Ricinus communis plant samples. Libyan Med J. 2015;1(1):222-31.
- 57. Hamad Hasan, Zuhir Akrim, Farag Shuib, Dala Abdraba. Efficiency of Cynara Cornigera fruits on antibacterial, antifungal and its phytochemical, anti-oxidant screening. Libyan Med J. 2025;3(1):120-8.
- 58. Hamad Hasan, Ashour Sulayman, Ahmed Alehrir. Estimation of amino acid composition, total carbohydrate, and total protein content in Ballota pseudodictamnus plant extracts from Al Jabal Al Akhdar Region, Libya. Libyan Med J. 2025;3(1):266-71.
- 59. Hamad Hasan, Ahmed Hamad, Wafa Abdelsatar. Evaluation of anti-oxidant capacity, total phenol, metal, and mineral contents of Ziziphus lotus plant grown at some regions of AlGabal AlKhder, Libya. Libyan Med J. 2025;3(1):137-43.
- 60. Ben Arous NA, Naser ME, Hamad MAH. Phytochemical screening, anti-bacterial and anti-fungi activities of leafs, stems and roots of C. parviflorus Lam and C. salviifolius L plants. Int J Curr Microbiol App Sci. 2014;13(11):262-80.
- 61. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of Helichrysum stoechas grown in Libya. Afr J Biol Sci. 2024;3(6):2349-60.
- 62. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Evaluation of metal and mineral contents of leafs, stems and roots of C. Parviflorus Lam and C. Salviifolius L plants growing at Al Ghabal Al-Khder (Libya). Int J Adv Multidiscip Res Stud. 2024;4(5):191-4.
- 63. Hamad MAH, Salem AM. Total carbohydrate, total protein, minerals and amino acid contents in fruits, pulps and seeds of some cultivars of muskmelon and watermelon fruit samples collected from Algabal Alkhder region. Sch J Appl Med Sci. 2024;12(1):1-7.
- 64. Gonaid MI, Ibrahim H, Al-Arefy HM. Comparative chemical and biological studies of Salvia fruticosa, Ocimum basillicum and Pelergonium graveolans cultivated in Al-Jabal Al- Akhdar. J Nat Prod Plant Resour. 2012;6(2):705-10.
- 65. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Men, Origanum and Salvia) growing at Al-Gabal Al-akhder Region-Libya. Afr J Basic Appl Sci. 2017;9(3):161-4.
- 66. Anas FAA, Hamad MAH, Salim AA, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of Helichrysum stoechas grown in Libya. Afr J Biol Sci. 2024;3(6):2349-60.
- 67. Haroon A, Hasan H, Wafa AAS, Baset ESM. A comparative study of morphological, physiological and chemical properties of leafs and steam samples of (E.gomphocephala) (Tuart) plant growing at coastal (Derna city) and J Res Environ Earth Sci. 2024;9(12):10-8.
- 68. Hamad MAS, Ali AR. Separation and identification the speciation of the phenolic compounds in fruits and leaves of some medicinal plants (Juniperus phoenicea and Quercus coccifera) growing at Algabal Al Akhder region, Libya. Indian J Pharm Educ Res. 2016;51(3):299-303.

- 69. Enam FM, Wesam FAM, Hamad MAH. Detection the contents of minerals of (Sodium, Potassium and Calcium) and some metals of (Iron, Nickel and Copper) in some vegetable and the samples collected from Al-Marj. Int J Adv Multidiscip Res Stud. 2023;5(3):304-9.
- 70. Hamad MIH, Safa RM Mousa. Synthesis and (IR and TEM) characterization of leafs and stem nanoparticles of Artemisia plant: comparative study for the evaluation of anti-bacterial efficiency. Int J Adv Multidiscip Res Stud. 2024;4(5):195-9.
- 71. Elsalhin H, Abobaker HA, Hasan H, El-Dayek GA. Antioxidant capacity and total phenolic compounds of some algae species (Anabaena and Spirulina platensis). Sch Acad J Biosci. 2016;4(10):782-6.
- 72. Alaila AK, El Salhin HE, Ali RF, Hasan HM. Phytochemical screening of some herbal plants (Men, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. Int J Pharm Life Sci. 2017;8(4):5500-3.
- 73. Hasan H, Mariea FFE, Eman KS. The contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. EPH Int J Appl Sci. 2014;6(3):1-8.
- 74. El-Mehdawe MF, Eman KS, Hamad MIH. Heavy metals and mineral elements contents of leafs and stems for some herbal plants at AL-Gabal AL-Akhder region. Chem Sci Rev Lett. 2014;3(12):980-6.
- 75. Hamad MIH, Aaza IY, Safaa SHN, Mabrouk MS. Biological study of transition metal complexes with adenine ligand. Proc. 2019;41(1):77.
- 76. Abdull-Jalliel H, Sulayman A, Alhoreir M, Hasan H. The antimicrobial effect of some metal concentration on growth of staphylococcus and klebsiella bacteria species. AlQalam J Med Appl Sci. 2025;8(3):1646-56.
- 77. Abdull–Jalliel H, B Arous N, Alhoreir M, Hasan H. Using the extracts of the (Dodder) plant and the concentrations of some metals as inhibitors for growth, the (Pseudomonas) bacteria isolated from some hospital rooms in Derna and Al bayda. AlQalam J Med Appl Sci. 2025;8(3):1600-11.
- 78. Hasan H, Abdelgader I, Emrayed H, Abdel-Gany K. Removal of the medical dye safranin from aqueous solutions by sea grasses activated carbon: a kinetic study. AlQalam J Med Appl Sci. 2025;8(3):428-34.
- 79. Hasan HMA, Alhamdy MA. Adsorption and kinetic study for removal some heavy metals by using activated carbon of sea grasses. Int J Adv Multidiscip Res Stud. 2024;4(6):677-85.
- 80. Almadani EA, Hamad MAH, Kwakab FS. Kinetic study of the adsorption of the removal of bromo cresol purple from aqueous solutions. Int J Res Granthaalayah. 2019;7(12):1-10.
- 81. Ahmed ONH, Hamad MAH, Fatin ME. Chemical and biological study of some transition metal complexes with guanine as ligand. Int J New Chem. 2023;10(3):172-83.
- 82. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somia MAE. Synthesis, characterization and antibacterial applications of compounds produced by reaction between Barbital with Threonine, glycine, lycine, and alanine. Afr J Biol Sci. 2024;6(4):1-10.
- 83. Emrayed H, Hasan H, Liser R. Corrosion inhibition of carbon steel using (Arginine –levofloacin-metal) complexes in acidic media. AlQalam J Med Appl Sci. 2025;8(3):1633-40.
- 84. Hasan H, El-maleh C. Evaluation of some heavy metal levels in tissue of fish collected from coasts of susa region, libya. Attahadi Med J. 2025;1(1):118-22.
- 85. Balal A, Obid M, Khatab H, Hasan H. Determination of lead and cadmium marine water and crabs (pachygrapsus marmoratus) from tolmitha coast, Libya. AlQalam J Med Appl Sci. 2025;8(3):1670-7.
- 86. Hamad R, Ikraiam F, Hasan H. Determination of specific natural radionuclides in the bones of some local fish commonly consumed from the eastern Libyan coast. J Rad Nucl Appl. 2023;8(3):283-9.
- 87. Sroor AT, Walley El-Dine N, El-Bahi SM, Hasa HMA, Ali JM. Determination of radionuclides levels and absorbed dose for the, rock, plant and water in gondola- Libya. IOSR J Appl Phys. 2018;10(4):40-9.
- 88. Hasan H, Ammhmmid R, Khatab H, Ali J, Al kaseh A. Using gamma ray radiation to estimate the types and contents of radioactive nuclides in some ported sugar samples, Libya. AlQalam J Med Appl Sci. 2025;8(3):1795-803.
- 89. Hasan S, Abduljalil O, Mohamed F, Hasan H. Detection of residual pesticides (Imidacloprid ,Aldicarb,Metalaxyl,Cypermethrin ,Chlorpyrfos,DDA, and Endrin) in peach Samples collected from Jabal al Akhder farma,Libya. AlQalam J Med Appl Sci. 2025;8(4):2099-106.