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Abstract

The purpose of this work is studying the direct product of hypermodules. We introduce a general definition of
the direct product of R-hypermodules by extending the classical coordinatewise construction from module
theory. It is shown that the direct product preserves the axioms of an R-hypermodule. This result helped us to
prove that, direct Product of R-hypermodules is an R-hypermodule, and that the canonical projections as
hyperhomomorphisms.
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Introduction

Anvariyeh (2010) [1] investigated the case of 1-hypermodules and proved that their coordinatwise direct
product is again a 1-hypermodule. The restriction to 1-hypermodules was mainly motivated by the relative
simplicity of their structure: the hyperoperations are essentially single-valued or constrained, which allows
one to avoid many of the technical complications that arise in the general setting of R-hypermodules. At that
time, the categorical framework for hypermodules was not yet fully developed, so focusing on this special
class provided a tractable context to establish the first results on direct products. In contrast, the present
work extends this line of research by formulating a general definition of the direct product for arbitrary R-
hypermodules and proving that it satisfies both the axioms of an R-hypermodule and the universal property,
thereby placing it within the categorical setting of hypermodule theory. We shall recall some notions and
basic results about hyperstructures [2] that we shall use in the following paragraphs.

Let H be a nonempty set and let P*(H) be the set of all nonempty subsets of H. A hyperoperation on H is a
mape: H xH —P* (H) and the couple (H, °) is called a hypergroupoid. If A and B are nonempty subsets of H,

then we denote A° B = Ugesa,a®°b,x°A={}Aand A°x=A - {x}.
beB
A hyper groupoid (H, °) is said to be commutative if a °-b = b ca for all a, b € H. A hypergroupoid (H, ) is called

a semihypergroup if for all x, y, z of H we have (x °y) ° z =x ° (y ° z), which means that

UezZ=Uyex.yU ° Z = Upey.zx ° V.
An element e of H is called an identity (scalar-identity) of (H,°) if for all a € H, we have
a€(eca)N(ace), (fa} =(e°a) N (a-e)). We say that a semihypergroup (H, °) is a hypergroup if for all x € H,
we have x ° H = H - x = H. A sub-hypergroup (K, °) of (H, ¢) is a nonempty set K, such that for all k €K, we
have k - K = K » k = K. Several kinds of hyperrings and hypermodules can be defined on a nonempty set. In
what follows, we shall consider some of the most general types of hyperrings and hypermodules.

Preliminaries
Definition 2.1.[3l The triple (R, +, ‘) is a hyperring if:
i) (R, +) is a commutative hypergroup;
ii) (R, -) is a semi hypergroup;
iii) the hyperoperation “e” is distributive over the hyperoperation “+”, which means that for all r, s, t of R we
have:
r(s +t) =rs + rt and (r +s)t = rt + st.

Example2.2.6 Let a € R with a 2 1 and R = [a, ) U{O}. Define a hyperoperation @ on

v} if x=0
_ {x} if y=o0
x®y= @)U} if x=y=0

{min{x,y}}  if x=zy, x#0, y#0
Moreover, define a hyperoperation ©® on R by a ©® b = {a -b}, where -is the usual multiplication on R, for all
a, b € R. Then (R, @, ©) is a strongly distributive hyperring.
Example2.3. Let R = {0, 1, 2} be a set with hyperoperation + and binary operation ¢ as following:

N — O
—
A
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Then (R,+, ¢) is a hyperring.
Definition 2.4.31 Let (R, *, °) be a hyperring. A nonempty set M, endowed with two hyper operations @0,
is called a left hypermodule over (R,*, °) if the following conditions hold:
i) (M,®) is a commutative hyper group;
ii) ©: RxM —P*(M) acts such that for all a, b of M and r, s of R we have

1)rO@a®b)=rOadrOhb)

2)r*s)Oa=r©Oa)d(sOa)

3)(res)Oa=rQO (s O a).
If both (R, *) and (M , @) have scalar identities, denoted by Oz and Owm , then the R-hypermodule M , @, ©)
also satisfies the condition: for all a of M, we have Or © a = Om , Moreover, if (R, °) has an identity, denoted
by 1, then the hyper module (M , @, ©) is called unitary if it satisfies the condition: for all a of M, we have
(®a = a. In what follows, we consider only left hypermodules, which we shall simply call R-hypermodules.In
(i, ii), if the equalitiessr QO (@@ b)S (rO a) P (rO b)and (r*s) O ac (r © a) ® (s © a) hold, then the R-
hypermodule M is said to be strongly distributive.

Example 2.5. In Example 2.3. Let M; = {a, b} be a set with hyperoperation @ as follows:

Then (M, @) is a commutative hypergroup. Now, we define the acts O: R X M; — P*(M) as the previous table,
then (M;, @, ©) is an R-hypermodule.
Similarly, M,={c, d}, and M;={f, g} with hyperoperation acts as follows:

Then (M,, @, ©) and (M3, @, ©) are R-hypermodules.

Definition 2.6.[181 A nonempty subset N of M is called a sub-hyper-module of the hypermodule (M,+,") if
(N,+) is a sub-hypergroup of (M, +) and RN < P*(N).

Example 2.7.14 Let R be the hyperring defined in Example 2.2. Let t € R with O < t <1 and M = [0, t). Define
a hyperoperation + on M by, for any x,y € M

oy (max(ey}}  if x#y
[0, x] if x=y
In addition, define a multivalued scalar operation © by, for any a € Randx € M

{0} if a=0
XOY"{ [0 %] if a0
It can be checked directly that (M, +, ©) is a strongly distributive R-hypermodule. Moreover, {0} is a sub-
hypermodule of M.

Definition 2.8.[1 Let M; and Mz be R-hypermodules. A function f: M; —Mz3 is called an R-homomorphism, if
for every (x, y) EM and r € R we have

1) fix+y)=1f(x) +f(y)and

2) f(rx=r-1x).
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Results

Let [];e; M; be the direct product of the commutative hypergroups M;, where [[;;M;={a |a: 1 —U;M; via
a() € M; for all i € I}. For every i €], let us denote a(i) := m; and a= (m;);;- Here, (i € I) is called the it
component of a. The function a= (m);e-= (m1, ma ,..., mj,...) in case I is a countable set.

7~

Let a = (Mg , B = (M')ie;- € [ier M;. Functioning by the definition of equality, a = B if and only if m; = m/;
for every i €l.

Remarks 3.1.[5l6]
(i) If we are given maps ai: A — Ai, i € I, then the natural map a: A — [[;; 4; is defined by aa() = ai a
(ii) If we are given maps ai: A; »B;, then the natural map a: A[l;¢; 4; — Bllie; Bi, is defined by aa(i = a: (a(d)

Definition 3.2. Let R be a hyperring, and let be a family of R-hypermodules. We defined the direct product
of this family as the set follows:
P =[lie M :={(m)ie, |m; € M;V i€}
On this set, we define the following coordinate-wise operations:
Hyperaddition: form=(m; ), n=(n; ) €[] M;,
m @ n:= (m; ©; n)={(x)ies€ [lies Mi | x; €Em; Gyniforall ie 1} (3.1)

Scalar action: Forr e Rand m = (m; ) € [ M;,,

r O mi=(r O; m; ) ={¥i)ies€ [lier Mi| y €rOym; foralliel} (3-21\ .
Identity element: Op:= (0;);¢; ; 0; € M; With these operations, we can prove in the next theorem (P,® , ©)
is an R-hypermodule.

Proposition 3.3. The hyper operation @ : [[ M; x [[ M; — P*([] M;) as
m®n:=(m®;n) ={(x)ie€ it M;| x:€ m; ®; n; for all i € 1}, is well-define.

Prove. Let. m=m andn=n"
Then m; @i n = ml-\ @i n; )
Hencem @ n=m" @ n". Therefore @ is well-defined.

Theorem 3.4. The (P, ® , O ) is a left R-hypermodule

Proof. First, we must prove (P, @ ) is a commutative hypergroup
forallm, n € P,ielwehave m; @;n; # 0, by the axiom of M..
> m@®n+o
we have @; is commutative over Mj, since m; @; n;, = m; ; n;
thenm@®n=m®; n=m® n=ndm
foralls, m,n€P, s ®(m®n)=(s®; ( m; ® n;)), since @, is associative
>(s® m) Gy
= (s @5 m )A@ n
For all i €I, there exists 0; € M;, Op = (0;) thenm @ Op=( m; $; 0;) =(m;)=m
For all I there exists 7 such that 0,€ (m; @; ;) defined = (#;); then Op€ (m @ #i)
(We call the element 7 the opposite of m)
By satisfying the properties of a commutative hypergroup, then (P, @ ) is a commutative hypergroup
Second, we must prove that (P, ® , © ) is an R-hypermodule.
rOMm® n)=r O; (m; ®; ny), since Q; is distributive over @; then
o r©im) i rOim)=(rO m)rO n)
(rs)O m=(réh;s)O;, mforallr, s ERm eM by axiom of M, we have
. (rOim) @i (sO;m)=(rO md (s ’Qm),\
(rs) © m = (rs) ©; m;® m by axiom of M we have (r ©; (s ©O;m)) =(r O (s © m))
since 1 ©; m; ={my)}foralll1 eRthen1® m=m
then (P, ® , © ) are R-hypermodule.

Example 3.5. In Examples 2.3 and 2.5. , let
P =M, = M; X My X M3={(m,,m,,m3) Vm; € M;,i = 1,2,3}

= {a, b}x {c, d} x{f, g}={ (a,c,)), (a,c,g),(a,d,]), (a,d,g), (b,c,f), (b,c,g), (b,d,f), (b,d,g)}. By (3.1) the hyperoperation
@ on P is defined as follows:

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0
Received: 19-08-2025 - Accepted: 19-10-2025 - Published: 26-10-2025 2419


https://doi.org/10.54361/ajmas.258445

https:,

Algalam Journal of Medical and Applied Sciences. 2025;8(4):2417-2420
doi.orqg/10.54361/ajmas.258445

DES o) @cd @A) @d® b))  beg  bA)  bdg
(., fad.f, i(b,c.), (b,d,f,
- @8 (acg) ‘(a’d’i’ ((a,d,g))} (b.cg) (e o) ‘(':’d’i) ((%d,g))}
{ a’C’ b { a’C7g b { ’C’ J { ?C?g b
- @dh  @dd  pap  @ag  ©Y0 B bde)
(adh, f{acg ?a’c’?’ b,dd, (b.og %C?
a,d,I), a,c,g , a,c,g , ,d,I), ,C,g , ,C,g ,
@48  ade (@dg (@d) P bdg  (bdg (bd,
(ad g} — L . ((b’i’g)}
{ a’c’ b { a’c’g)’ {(a’ K b { a’ ’g)’
- (b.cf) — Beg bl bde Ty begl  bdh (bdg)
ib,c.f ibdd, facg E(a’c’?’ fa,dg) E(ac(ii?
,C,1), ,a,I), a,c,g 9 a,c,g 0 a, ,g 0 a, ,g 0
el megr  PYY bagl  beg (bof, (bdg (bd,
(b,c.g) (b,d.g)}
beh, {bog, {@dd iadg {((a’g’f? e
,C,I), ,C,g , a,da,l), a, ,g 5 a,qa,l), a, ,g ,
b.dh  bdg  mah  bdg  (bd) (bdg (boh (beg)
bdf  (bdg)
{(a’c’ﬂ’ {(a’d’ﬂ? {(a’c’g)’
(b d g) {(b’d’f)’ {(b’c’g)’ (b’C’g)’ {(a’d’g)? (a’d’g)’ (a’d’g)’ P
48 bdgr  (bdgl (bd (bdgl (bdd (bog
_ (b,d,g) bdg} (b.dg)
Then (P, @) is a commutative hypergroup.
Now. By (3,2) an acts O:R x P — P*(P) is defined by the following table:
- @o)  (@eh  @o)  (@eh  @o)  (@eh (@)  (ach
B ccd  @eg (@A) @de  boeh  beg  (bd)  (bdg
2 @) @y @A) @dg  Bo)  Bog  Bd)  (Gde

Then

—_

P, @, ) is an R-hypermodule

Proposition 3.6. The map mij: P —»M; by mj(m;);e; = m; for j€I, is a natural projection homomorphism.

Proof.

if xEm@®n=x,€m @ njthenim @ n) =ni( m; ®; n;) =1(m; ) B; n(ny)

= n(m) @ r(n)
ifyerOm = y,er®O; m; thenr O m)=n(r O; my)

=r ©; (my).U

Conclusion
In this paper, we proved that, direct Product of R-hypermodules is an R-hypermodule, and that the
canonical projections are hyperhomomorphisms.
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