Original article

The Direct Product of Hypermodules over a Hyperring

FatimahAlzahra Alqabaeli¹, Yasser AbouElwan¹, Hussein Shat²

¹Department of Mathematics, Faculty of Science, University of Omer Al Mukhtar, Al Bayda, Libya ²General Department, Faculty of Management, University of Bright Star, Al Burayqah, Libya Corresponding Email. yasser.abouelwan@omu.edu.ly

Abstract

The purpose of this work is studying the direct product of hypermodules. We introduce a general definition of the direct product of R-hypermodules by extending the classical coordinatewise construction from module theory. It is shown that the direct product preserves the axioms of an R-hypermodule. This result helped us to prove that, direct Product of R-hypermodules is an R-hypermodule, and that the canonical projections as hyperhomomorphisms.

Keywords. Hyperstructure, Hyperring, R-hypermodule, Direct Product.

Introduction

Anvariyeh (2010) [1] investigated the case of 1-hypermodules and proved that their coordinatwise direct product is again a 1-hypermodule. The restriction to 1-hypermodules was mainly motivated by the relative simplicity of their structure: the hyperoperations are essentially single-valued or constrained, which allows one to avoid many of the technical complications that arise in the general setting of R-hypermodules. At that time, the categorical framework for hypermodules was not yet fully developed, so focusing on this special class provided a tractable context to establish the first results on direct products. In contrast, the present work extends this line of research by formulating a general definition of the direct product for arbitrary R-hypermodules and proving that it satisfies both the axioms of an R-hypermodule and the universal property, thereby placing it within the categorical setting of hypermodule theory. We shall recall some notions and basic results about hyperstructures [2] that we shall use in the following paragraphs.

Let H be a nonempty set and let P*(H) be the set of all nonempty subsets of H. A *hyperoperation on* H is a map°: $H \times H \to P^*$ (H) and the couple (H, °) is called a *hypergroupoid*. If A and B are nonempty subsets of H, then we denote $A \circ B = \bigcup_{a \in A} a \circ b$, $x \circ A = \{x\} \circ A$ and $A \circ x = A \circ \{x\}$.

A hyper groupoid (H, \circ) is said to be *commutative* if a \circ b = b \circ a for all a, b \in H. A hypergroupoid (H, \circ) is called a *semihypergroup* if for all x, y, z of H we have (x \circ y) \circ z = x \circ (y \circ z), which means that

$$\mathbf{u} \circ \mathbf{z} = \bigcup_{u \in x \circ y} u \circ \mathbf{z} = \bigcup_{v \in y \circ z} x \circ v$$
.

An element e of H is called an *identity* (scalar-identity) of (H, \circ) if for all $a \in H$, we have $a \in (e \circ a) \cap (a \circ e)$, $(\{a\} = (e \circ a) \cap (a \circ e))$. We say that a semihypergroup (H, \circ) is a *hypergroup* if for all $x \in H$, we have $x \circ H = H \circ x = H$. A sub-hypergroup (K, \circ) of (H, \circ) is a nonempty set K, such that for all $k \in K$, we have $k \circ K = K \circ k = K$. Several kinds of hyperrings and hypermodules can be defined on a nonempty set. In what follows, we shall consider some of the most general types of hyperrings and hypermodules.

Preliminaries

Definition 2.1. [3]. The triple $(R, +, \cdot)$ is a hyperring if:

i) (R, +) is a commutative hypergroup;

ii) (R, ⋅) is a semi hypergroup;

iii) the hyperoperation "•" is distributive over the hyperoperation "+", which means that for all r, s, t of R we have:

$$r(s + t) = rs + rt$$
 and $(r + s)t = rt + st$.

Example 2.2. [6]. Let $a \in R$ with $a \ge 1$ and $R = [a, \infty) \cup \{0\}$. Define a hyperoperation \bigoplus on

$$\mathbf{x} \bigoplus \mathbf{y} = \begin{cases} \begin{cases} \{y\} & \text{if } x = 0 \\ \{x\} & \text{if } y = 0 \end{cases} \\ [a, \infty) \cup \{0\} & \text{if } x = y \neq 0 \\ \{\min\{x, y\}\} & \text{if } x \neq y, \ x \neq 0, \ y \neq 0 \end{cases}$$

Moreover, define a hyperoperation \odot on R by a \odot b = {a ·b}, where ·is the usual multiplication on R, for all a, b \in R. Then (R, \oplus , \odot) is a strongly distributive hyperring.

Example 2.3. Let $R = \{0, 1, 2\}$ be a set with hyperoperation + and binary operation • as following:

+	0	1	2
0	0	1	2
1	1	1	R
2	2	R	2

•	0	1	2
0	0	0	0
1	0	1	1
2	0	2	2

Then $(R,+, \bullet)$ is a hyperring.

Definition 2.4. [3] Let $(R, *, \circ)$ be a hyperring. A nonempty set M, endowed with two hyper operations $\bigoplus \bigcirc$, is called a *left hypermodule* over $(R, *, \circ)$ if the following conditions hold:

i) (M, \oplus) is a commutative hyper group;

ii) \bigcirc : R×M \rightarrow P*(M) acts such that for all a, b of M and r, s of R we have

1) $r \odot (a \oplus b) = (r \odot a) \oplus (r \odot b)$

2) $(r * s) \odot a = (r \odot a) \oplus (s \odot a)$

3) $(r \circ s) \odot a = r \odot (s \odot a)$.

If both (R, *) and (M, \oplus) have scalar identities, denoted by 0_R and 0_M , then the R-hypermodule (M, \oplus, \bigcirc) also satisfies the condition: for all a of M, we have $0_R \bigcirc a = 0_M$, Moreover, if (R, \circ) has an identity, denoted by 1, then the hyper module (M, \oplus, \bigcirc) is called unitary if it satisfies the condition: for all a of M, we have $\bigcirc a = a$. In what follows, we consider only left hypermodules, which we shall simply call *R-hypermodules*. In (i, ii), if the equalities $r \bigcirc (a \oplus b) \subseteq (r \bigcirc a) \oplus (r \bigcirc b)$ and $(r * s) \bigcirc a \subseteq (r \bigcirc a) \oplus (s \bigcirc a)$ hold, then the R-hypermodule M is said to be *strongly distributive*.

Example 2.5. In Example 2.3. Let $M_1 = \{a, b\}$ be a set with hyperoperation \bigoplus as follows:

\oplus	a	b
a	a	b
b	b	M_1

\odot	а	b
0	а	a
1	а	b
2	a	ъ

Then (M_1, \bigoplus) is a commutative hypergroup. Now, we define the acts $\bigcirc: R \times M_1 \to P^*(M)$ as the previous table, then $(M_1, \bigoplus, \bigcirc)$ is an R-hypermodule.

Similarly, $M_2 = \{c, d\}$, and $M_3 = \{f, g\}$ with hyperoperation acts as follows:

\oplus	c	d
c	С	d
d	d	M_2

\oplus	f	g
f	f	g
g	g	M_3

0	С	d
0	С	С
1	c	d
2	С	d

0	f	g
0	f	f
1	f	g
2	f	g

Then (M_2, \oplus, \odot) and (M_3, \oplus, \odot) are R-hypermodules.

Definition 2.6. [1][3] A nonempty subset N of M is called a *sub-hyper-module* of the hypermodule $(M,+,\cdot)$ if (N,+) is a sub-hypergroup of (M,+) and $RN \subseteq P^*(N)$.

Example 2.7. Let R be the hyperring defined in Example 2.2. Let $t \in R$ with $0 < t \le 1$ and M = [0, t). Define a hyperoperation + on M by, for any $x, y \in M$

$$\mathbf{x} + \mathbf{y} = \begin{cases} & \{\max\{x, y\}\} & \text{if } x \neq y \\ & [0, x] & \text{if } x = y \end{cases}$$

In addition, define a multivalued scalar operation \odot by, for any $a \in R$ and $x \in M$

$$\mathbf{x} \odot \mathbf{y} = \begin{cases} \{0\} & if \quad a = 0\\ \left[0, \frac{x}{a}\right] & if \quad a \neq 0 \end{cases}$$

It can be checked directly that $(M, +, \odot)$ is a strongly distributive R-hypermodule. Moreover, $\{0\}$ is a subhypermodule of M.

Definition 2.8.^[1] Let M_1 and M_2 be R-hypermodules. A function $f: M_1 \to M_2$ is called an *R-homomorphism*, if for every $(x, y) \in M$ and $r \in R$ we have

- 1) f(x + y) = f(x) + f(y) and
- 2) $f(r \cdot x) = r \cdot f(x)$.

Results

Let $\prod_{i \in I} M_i$ be the direct product of the commutative hypergroups M_i , where $\prod_{i \in I} M_i = \{\alpha \mid \alpha : I \to \bigcup_{i \in I} M_i \text{ via } \alpha(i) \in M_i \text{ for all } i \in I\}$. For every $i \in I$, let us denote $\alpha(i) := m_i$ and $\alpha = (m_i)_{i \in I}$. Here, $(i \in I)$ is called the ith component of α . The function $\alpha = (m_i)_{i \in I} = (m_1, m_2, ..., m_i, ...)$ in case I is a countable set.

Let $\alpha = (m_i)_{i \in I}$, $\beta = (m'_i)_{i \in I}$. $\in \prod_{i \in I} M_i$. Functioning by the definition of equality, $\alpha = \beta$ if and only if $m_i = m'_i$ for every $i \in I$.

Remarks 3.1.[5][6]

(i) If we are given maps $a_i: A \to A_i$, $i \in I$, then the natural map $a: A \to \prod_{i \in I} A_i$ is defined by $aa(i) = a_i a$ (ii) If we are given maps $a_i: A_i \to B_i$, then the natural map $a: A \prod_{i \in I} A_i \to B \prod_{i \in I} B_i$, is defined by $aa(i) = a_i (a(i))$

Definition 3.2. Let R be a hyperring, and let be a family of R-hypermodules. We defined the *direct product* of this family as the set follows:

$$P = \prod_{i \in I} M_i := \{(m_i)_{i \in I} \mid m_i \in M_i \ \forall \ i \in I\}$$

On this set, we define the following coordinate-wise operations:

Hyperaddition: for $m = (m_i)$, $n = (n_i) \in \prod M_i$,

$$\mathbf{m} \widehat{\bigoplus} \mathbf{n} := (m_i \bigoplus_i n_i) = \{(x_i)_{i \in I} \in \prod_{i \in I} M_i \mid x_i \in m_i \bigoplus_i n_i \text{ for all } i \in I \}$$
(3.1)

Scalar action: For $r \in R$ and $m = (m_i) \in \prod M_i$,

$$\mathbf{r} \widehat{\bigcirc} \mathbf{m} := (\mathbf{r} \bigcirc_i m_i) = \{(y_i)_{i \in I} \in \prod_{i \in I} M_i \mid y_i \in \mathbf{r} \bigcirc_i m_i \text{ for all } i \in I\}$$
(3.2)

Identity element: $0_p := (0_i)_{i \in I}$; $0_i \in M_i$ With these operations, we can prove in the next theorem $(P, \widehat{\bigoplus}, \widehat{\bigcirc})$ is an R-hypermodule.

Proposition 3.3. The hyper operation $\widehat{\oplus}: \prod M_i \times \prod M_i \to P^*(\prod M_i)$ as $m \widehat{\oplus} n := (m_i \oplus_i n_i) = \{(x_i)_{i \in I} \in \prod_{i \in I} M_i \mid x_i \in m_i \oplus_i n_i \text{ for all } i \in I \}$, is well-define.

Prove. Let. m = m and n = n

Then $m_i \oplus_i n_i = m_i \oplus_i n_i$

Hence $m \oplus n = m \oplus n$. Therefore $\widehat{\oplus}$ is well-defined.

Theorem 3.4. The $(P, \widehat{\oplus}, \widehat{\odot})$ is a left R-hypermodule

Proof. First, we must prove $(P, \widehat{\oplus})$ is a commutative hypergroup for all m, $n \in P$, $i \in I$ we have $m_i \oplus_i n_i \neq \emptyset$, by the axiom of M_i .

$$\Rightarrow$$
 m $\widehat{\bigoplus}$ n \neq Ø

we have \bigoplus_i is commutative over M_i , since $m_i \bigoplus_i n_i = m_i \bigoplus_i n_i$

then $\widehat{\bigoplus}$ n = $m_i \bigoplus_i n_i = m_i \bigoplus_i n_i = n \widehat{\bigoplus}$ m

for all s, m, n \in P, s $\widehat{\oplus}$ (m $\widehat{\oplus}$ n) = (s \bigoplus_i ($m_i \bigoplus_i n_i$)), since \bigoplus_i is associative

$$\Rightarrow$$
 (s $\bigoplus_i m_i$) $\bigoplus_i n_i$

$$= (s \widehat{\oplus} m) \widehat{\oplus} n$$

For all $i \in I$, there exists $0_i \in M_i$, $0_P = (0_i)$ then $m \oplus 0_P = (m_i \oplus_i 0_i) = (m_i) = m$

For all I there exists \widetilde{m} such that $0_i \in (m_i \oplus_i \widetilde{m}_i)$ defined $= (\widetilde{m}_i)_i$ then $0_P \in (m \oplus \widetilde{m})$

(We call the element \tilde{m} the opposite of m)

By satisfying the properties of a commutative hypergroup, then $(P, \widehat{\oplus})$ is a commutative hypergroup Second, we must prove that $(P, \widehat{\oplus})$ is an R-hypermodule.

 $r \odot (m \oplus n) = r \odot_i (m_i \oplus_i n_i)$, since \odot_i is distributive over \oplus_i then

$$(r \odot_i m_i) \oplus_i (r \odot_i n) = (r \widehat{\odot} m)(r \widehat{\odot} n)$$

 $(r \widehat{\oplus} s) \widehat{\odot} m = (r \bigoplus_i s) \bigcirc_i m$ for all $r, s \in R m \in M$ by axiom of M, we have

$$(r \bigcirc_i m_i) \bigoplus_i (s \bigcirc_i m_i) = (r \widehat{\bigcirc} m) \widehat{\bigoplus} (s \widehat{\bigcirc} m)$$

 $(rs) \widehat{\odot} m = (rs) \bigcirc_i m_i \bigcirc m$ by axiom of M_i we have $(r \bigcirc_i (s \bigcirc_i m)) = (r \widehat{\odot} (s \widehat{\odot} m))$

since $1 \odot_i m_i = \{(m_i)\}$ for all $1 \in \mathbb{R}$ then $1 \odot \mathbb{M} = \mathbb{M}$

then $(P, \widehat{\oplus}, \widehat{\odot})$ are R-hypermodule.

Example 3.5. In Examples 2.3 and 2.5., let

$$P = \prod_{i=1}^{3} M_i = M_1 \times M_2 \times M_3 = \{(m_1, m_2, m_3) \ \forall \ m_i \in M_i, i = 1, 2, 3\}$$

= $\{a, b\} \times \{c, d\} \times \{f, g\} = \{(a, c, f), (a, c, g), (a, d, f), (a, d, g), (b, c, f), (b, c, g), (b, d, f), (b, d, g)\}$. By (3.1) the hyperoperation $\widehat{\bigoplus}$ on P is defined as follows:

$\widehat{\oplus}$	(a,c,f)	(a,c,g)	(a,d,f)	(a,d,g)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)
(a,c,f)	(a,c,f)	(a,c,g)	(a,d,f)	(a,d,g)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)
(a,c,g)	(a,c,g)	{(a,c,f), (a,c,g)}	(a,d,g)	{(a,d,f), (a,d,g)}	(b,c,g)	{(b,c,f), (b,c,g)}	(b,d,g)	{(b,d,f), (b,d,g)}
(a,d,f)	(a,d,f)	(a,d,g)	{(a,c,f), (a,d,f)}	{(a,c,g), (a,d,g)}	(b,d,f)	(b,d,g)	{(b,c,f), (b,d,f)}	{(b,c,g), (b,d,g)}
(a,d,g)	(a,d,g)	{(a,d,f), (a,d,g)}	{(a,c,g), (a,d,g)}	{(a,c,f), (a,c,g), (a,d,f), (a,d,g)}	(b,d,g)	{(b,d,f), (b,d,g)}	{(b,c,g), (b,d,g)}	{(b,c,f), (b,c,g), (b,d,f), (b,d,g)}
(b,c,f)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)	$\{(a,c,f), (b,c,f)\}$	$\{(a,c,g), (b,c,g)\}$	{(a,d,f), (b,d,f)}	{(a,d,g), (b,d,g)}
(b,c,g)	(b,c,g)	{(b,c,f), (b,c,g)}	(b,d,g)	{(b,d,f), (b,d,g)}	{(a,c,g), (b,c,g)}	{(a,c,f), (a,c,g), (b,c,f), (b,c,g)}	{(a,d,g), (b,d,g)}	{(a,d,f), (a,d,g), (b,d,f), (b,d,g)}
(b,d,f)	(b,d,f)	(b,d,g)	{(b,c,f), (b,d,f)}	{(b,c,g), (b,d,g)}	{(a,d,f), (b,d,f)}	{(a,d,g), (b,d,g)}	{(a,c,f), (a,d,f), (b,c,f), (b,d,f)}	{(a,c,g) (a,d,g), (b,c,g), (b,d,g)}
(b,d,g)	(b,d,g)	{(b,d,f), (b,d,g)}	{(b,c,g), (b,d,g)}	{(a,c,f), (b,c,g), (b,d,f), (b,d,g)}	{(a,d,g), (b,d,g)}	{(a,d,f), (a,d,g), (b,d,f), (b,d,g)}	{(a,c,g), (a,d,g), (b,c,g), (b,d,g)}	P

Then $(P, \widehat{\oplus})$ is a commutative hypergroup.

Now. By (3,2) an acts $\widehat{\bigcirc}: R \times P \to P^*(P)$ is defined by the following table:

 	(a,c,f)	(a,c,g)	(a,d,f)	(a,d,g)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)
0	(a,c,f)							
1	(a,c,f)	(a,c,g)	(a,d,f)	(a,d,g)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)
2	(a,c,f)	(a,c,g)	(a,d,f)	(a,d,g)	(b,c,f)	(b,c,g)	(b,d,f)	(b,d,g)

Then $(P, \widehat{\oplus}, \widehat{\odot})$ is an R-hypermodule

Proposition 3.6. The map $\pi_j : P \to M_j$ by $\pi_j(m_i)_{i \in I} = m_j$ for $j \in I$, is a natural projection homomorphism. **Proof.**

if
$$\mathbf{x} \in \mathbf{m} \ \widehat{\bigoplus} \ \mathbf{n} \Rightarrow x_i \in m_i \ \bigoplus_i \ n_i \ \text{then} \ \mathbf{n}(\mathbf{m} \ \widehat{\bigoplus} \ \mathbf{n}) = \mathbf{n}(\ m_i \ \bigoplus_i \ \mathbf{n}_i \) = \mathbf{n}(m_i \) \ \bigoplus_i \ \mathbf{n}(n_i)$$

$$= \mathbf{n}(\mathbf{m}) \ \widehat{\bigoplus} \ \mathbf{n}(\mathbf{n})$$
if $\mathbf{y} \in \mathbf{r} \ \widehat{\odot} \ \mathbf{m} \ \Rightarrow \ y_i \in \mathbf{r} \ \bigcirc_i \ m_i \ \text{then} \ \mathbf{n}(\mathbf{r} \ \widehat{\odot} \ \mathbf{m}) = \mathbf{n}(\mathbf{r} \ \bigcirc_i \ m_i)$

$$= \mathbf{r} \ \bigcirc_i \ \mathbf{n}(m_i).\Box$$

Conclusion

In this paper, we proved that, direct Product of R-hypermodules is an R-hypermodule, and that the canonical projections are hyperhomomorphisms.

References

- 1. Anvariyeh SM, Davvaz B. On the heart hypermodules. Math Scand. 2010;106:161-8.
- 2. Davvaz B, Vougiouklis T. A walk through weak hyper-structures: Hv-structures. Singapore: World Scientific Publishing Company; 2019.
- 3. Leoreanu-Fotea V. Fuzzy hypermodules. Comput Math Appl. 2009;57(3):466-75.
- 4. Wongyai C, Pianskool S. Some properties of extending hypermodules and C11-hypermodules. J Math Res. 2023;15(3):13-26. doi:10.5539/jmr.v15n3p13.
- 5. Türkmen E, Türkmen BN, Bordbar H. A characterization of normal injective and normal projective hypermodules. Axioms. 2024;13(5):410. doi:10.3390/axioms13050410.
- 6. Burris S, Sankappanavar HP. A course in universal algebra. Millennium ed. New York: Springer; 2012