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Abstract 
The purpose of this work is studying the direct product of hypermodules. We introduce a general definition of 
the direct product of R-hypermodules by extending the classical coordinatewise construction from module 
theory. It is shown that the direct product preserves the axioms of an R-hypermodule. This result helped us to 
prove that, direct Product of R-hypermodules is an R-hypermodule, and that the canonical projections as 
hyperhomomorphisms. 
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Introduction 
Anvariyeh (2010) [1] investigated the case of 1-hypermodules and proved that their coordinatwise direct 
product is again a 1-hypermodule. The restriction to 1-hypermodules was mainly motivated by the relative 

simplicity of their structure: the hyperoperations are essentially single-valued or constrained, which allows 

one to avoid many of the technical complications that arise in the general setting of R-hypermodules. At that 

time, the categorical framework for hypermodules was not yet fully developed, so focusing on this special 

class provided a tractable context to establish the first results on direct products. In contrast, the present 
work extends this line of research by formulating a general definition of the direct product for arbitrary R-

hypermodules and proving that it satisfies both the axioms of an R-hypermodule and the universal property, 

thereby placing it within the categorical setting of hypermodule theory. We shall recall some notions and 

basic results about hyperstructures [2] that we shall use in the following paragraphs.  

Let H be a nonempty set and let P*(H) be the set of all nonempty subsets of H. A hyperoperation on H is a 

map◦: H ×H →P* (H)  and the couple (H, ◦) is called a hypergroupoid. If A and B are nonempty subsets of H, 

then we denote A ◦ B = ⋃ 𝑎 ° 𝑏 𝑎∈𝐴 ,
𝑏∈𝐵

, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.        

A hyper groupoid (H, ◦) is said to be commutative if a ◦b = b ◦a for all a, b ∈ H.  A hypergroupoid (H, ◦) is called 

a semihypergroup if for all x, y, z of H we have (x ◦ y) ◦ z = x ◦ (y ◦ z), which means that      

u ◦ z =⋃ 𝑢 ◦  𝑧 𝑢∈𝑥 ◦𝑦   = ⋃ 𝑥 ◦  𝑣 𝑣∈𝑦◦𝑧 . 

An element e of H is called an identity (scalar-identity) of (H,◦) if for all a ∈ H, we have 

 a ∈ (e ◦a) ∩ (a ◦ e), ({a} = (e ◦ a) ∩ (a ◦ e)). We say that a semihypergroup (H, ◦) is a hypergroup if for all x ∈ H, 

we have x ◦ H = H ◦ x = H. A sub-hypergroup (K, ◦) of (H, ◦) is a nonempty set K, such that for all k ∈K, we 

have k ◦ K = K ◦ k = K. Several kinds of hyperrings and hypermodules can be defined on a nonempty set. In 

what follows, we shall consider some of the most general types of hyperrings and hypermodules. 

 

Preliminaries 

Definition 2.1.[3]. The triple (R, +, ·) is a hyperring if:  

i) (R, +) is a commutative hypergroup;  
ii) (R, ·) is a semi hypergroup;  

iii) the hyperoperation ‘‘•’’ is distributive over the hyperoperation ‘‘+’’, which means that for all r, s, t of R we 

have: 
r(s + t) = rs + rt and (r +s)t = rt + st. 

  

Example2.2.[6]. Let a ∈ R with a ≥ 1 and R = [a, ∞) ∪{0}. Define a hyperoperation ⊕ on 

x ⊕ y = {

{𝑦}                    𝑖𝑓          𝑥 = 0
{𝑥}                    𝑖𝑓          𝑦 = 0

[𝑎,∞)∪{0}       𝑖𝑓        𝑥=𝑦≠0
           {min{𝑥,𝑦}}         𝑖𝑓    𝑥≠𝑦 ,   𝑥≠0,   𝑦≠0

 

Moreover, define a hyperoperation ⊙ on R by a ⊙ b = {a ·b}, where ·is the usual multiplication on R, for all 

a, b ∈ R. Then (R, ⊕, ⊙) is a strongly distributive hyperring. 

Example2.3. Let R = {0, 1, 2} be a set with hyperoperation + and binary operation • as following: 

 

    

 

 
 

 

 

 

+ 0 1 2 

0 0 1 2 

1 1 1 R 

2 2 R 2 

• 0 1 2 

0 0 0 0 

1 0 1 1 

2 0 2 2 
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Then (R,+, •) is a hyperring. 

Definition 2.4.[3]   Let (R, *, ◦) be a hyperring. A nonempty set M, endowed with two hyper operations ⊕⊙, 
is called a left hypermodule over (R,*, ◦) if the following conditions hold:  

i) (M,⊕) is a commutative hyper group;  

ii) ⊙: R×M →P*(M) acts such that for all a, b of M and r, s of R we have  

        1) r ⊙(a ⊕ b) = (r ⊙ a) ⊕ (r ⊙ b)  

        2) (r * s) ⊙a = (r ⊙ a) ⊕ (s ⊙ a)  

        3) (r ◦ s) ⊙ a = r ⊙ (s ⊙ a).  

If both (R, * ) and (M , ⊕) have scalar identities, denoted by 0R and 0M , then the R-hypermodule (M , ⊕,  ⊙) 

also satisfies the condition: for all a of M, we have 0R ⊙ a = 0M , Moreover, if (R, ◦) has an identity, denoted 

by 1, then the hyper module (M , ⊕, ⊙) is called unitary if it satisfies the condition: for all a of M, we have   

⊙a = a. In what follows, we consider only left hypermodules, which we shall simply call R-hypermodules.In 

(i, ii), if the equalities r ⊙ (a ⊕ b) ⊆ (r ⊙ a) ⊕ (r ⊙ b) and (r * s) ⊙ a ⊆ (r ⊙ a) ⊕ (s ⊙ a) hold, then the R-

hypermodule M is said to be strongly distributive.  

 

Example 2.5. In Example 2.3.  Let 𝑀1 = {a, b} be a set with hyperoperation ⊕ as follows: 

 

 
 

 

 

 

 

Then (𝑀1, ⊕) is a commutative hypergroup. Now, we define the acts ⊙: 𝑅 × 𝑀1 → P*(𝑀) as the previous table, 

then (𝑀1, ⊕, ⊙) is an R-hypermodule. 

Similarly, 𝑀2={c, d}, and 𝑀3={f, g} with hyperoperation acts as follows: 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

Then (𝑀2, ⊕, ⊙) and (𝑀3, ⊕, ⊙) are R-hypermodules. 

 

Definition  2.6.[1][3] A nonempty subset N of M is called a sub-hyper-module of the hypermodule (M,+,·) if 

(N,+) is a sub-hypergroup of (M, +) and RN ⊆ P*(N). 

  

Example 2.7.[4] Let R be the hyperring defined in Example 2.2. Let t ∈ R with 0 < t ≤1 and M = [0, t). Define 

a hyperoperation + on M by, for any x, y ∈ M  

x + y ={     
{max{𝑥, 𝑦}}              𝑖𝑓     𝑥 ≠ 𝑦

[0, 𝑥]                       𝑖𝑓     𝑥 = 𝑦
 

In addition, define a multivalued scalar operation ⊙ by, for any a ∈ R and x ∈ M 

x ⊙ y = {    
{0}                 𝑖𝑓      𝑎 = 0

[0,
𝑥

𝑎
]               𝑖𝑓       𝑎 ≠ 0

 

It can be checked directly that (M, +, ⊙) is a strongly distributive R-hypermodule. Moreover, {0} is a sub-

hypermodule of M.  
 

Definition 2.8.[1] Let M1 and M2 be R-hypermodules. A function f: M1 →M2 is called an R-homomorphism, if 
for every (x, y) ∈M and r ∈ R we have 

1) f (x + y) = f (x) + f (y) and  
2) f (r ·x) = r ·f (x). 

 
 
 

⊙ a b 

0 a a 

1 a b 

2 a b 

⊕  a b 

a a b 

b b 𝑀1 

⊙ c d 

0 c c 

1 c d 

2 c d 

⊕  c d 

c c d 

d d 𝑀2 

⊙ f g 

0 f f 

1 f g 

2 f g 

⊕  f g 

f f g 

g g 𝑀3 

https://doi.org/10.54361/ajmas.258445


Alqalam Journal of Medical and Applied Sciences. 2025;8(4):2417-2420 

https://doi.org/10.54361/ajmas.258445  

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 

Received: 19-08-2025 - Accepted: 19-10-2025 - Published: 26-10-2025    2419 

 
Results  
Let ∏ 𝑀𝑖𝑖∈𝐼  be the direct product of the commutative hypergroups 𝑀𝑖, where   ∏ 𝑀𝑖𝑖∈𝐼  ={ α |α: I →⋃ 𝑀𝑖𝑖∈𝐼  via 

α(i) ∈ 𝑀𝑖 for all i ∈ I}. For every i ∈I, let us denote α(i ) :=  𝑚𝑖 and α= (𝑚𝑖)𝑖∈𝐼. Here, (i ∈ I) is called the ith 
component of α. The function      α= (𝑚𝑖)𝑖∈𝐼.= (m1, m2 ,..., mi ,...) in case I is a countable set.  

Let α = (𝑚𝑖)𝑖∈𝐼. , β = (𝑚′𝑖)𝑖∈𝐼. ∈ ∏ 𝑀𝑖𝑖∈𝐼 . Functioning by the definition of equality, α = β if and only if 𝑚𝑖 =  𝑚′𝑖` 

for every i ∈I. 

 
Remarks 3.1.[5][6]  

(i) If we are given maps αi : A  → Ai , i ∈ I, then the natural map    α : A → ∏ 𝐴𝑖𝑖∈𝐼  is defined by αa(i) = αi a  

(ii) If we are given maps αi : Ai →Bi, then the natural map   α: A∏ 𝐴𝑖𝑖∈𝐼  →  B∏ 𝐵𝑖𝑖∈𝐼 , is defined by αa(i) = αi (a(i)) 
 

Definition 3.2.  Let R be a hyperring, and let be a family of R-hypermodules. We defined the direct product 
of this family as the set follows:  

P = ∏ 𝑀𝑖𝑖∈𝐼 ∶= {(𝑚𝑖)𝑖∈𝐼   | 𝑚𝑖  ∈  𝑀𝑖  ∀  𝑖 ∈ 𝐼}                                                     
On this set, we define the following coordinate-wise operations: 

Hyperaddition: for m = (𝑚𝑖 ), n = (𝑛𝑖 ) ∈ ∏ 𝑀𝑖,  

m ⊕̂ n∶= ( 𝑚𝑖 ⊕𝑖 𝑛𝑖)={(𝑥𝑖)𝑖∈𝐼∈ ∏ 𝑀𝑖𝑖∈𝐼 |𝑥𝑖 ∈𝑚𝑖 ⊕𝑖 𝑛𝑖for all i ∈ I }                                 (3.1) 

 

Scalar action: For r ∈ R and m = (𝑚𝑖 ) ∈ ∏ 𝑀𝑖,,  

r ⊙̂ m∶=(r ⊙𝑖 𝑚𝑖 ) ={(𝑦𝑖)𝑖∈𝐼∈ ∏ 𝑀𝑖𝑖∈𝐼 | 𝑦𝑖 ∈ r ⊙𝑖 𝑚𝑖   for all i ∈ I }                               (3.2) 

Identity element: 0p∶=  (0𝑖)𝑖∈𝐼 ; 0𝑖 ∈ 𝑀𝑖 With these operations, we can prove in the next theorem (P, ⊕̂  , ⊙̂ ) 

is an R-hypermodule.  

 

Proposition 3.3. The hyper operation  ⊕̂ : ∏ 𝑀𝑖 × ∏ 𝑀𝑖  → P*(∏ 𝑀𝑖 ) as  

m ⊕̂ n ∶= ( 𝑚𝑖 ⊕𝑖 𝑛𝑖) = {(𝑥𝑖)𝑖∈𝐼∈ ∏ 𝑀𝑖𝑖∈𝐼 |  𝑥𝑖∈ 𝑚𝑖 ⊕𝑖 𝑛𝑖 for all i ∈ I }, is well-define. 

Prove. Let. m = m` and n = n`  

Then    𝑚𝑖  ⊕𝑖 𝑛𝑖   =  𝑚𝑖` ⊕𝑖  𝑛𝑖 `  

Hence m ⊕̂ n = m` ⊕̂ n`.  Therefore    ⊕̂  is well-defined. 

 

Theorem 3.4. The (P, ⊕̂  , ⊙̂ ) is a left R-hypermodule            

Proof. First, we must prove (P, ⊕̂ ) is a commutative hypergroup  

for all m, n ∈ P , i ∈ l we have   𝑚𝑖  ⊕𝑖 𝑛𝑖 ≠ ∅ , by the axiom of Mi.  

                                                  ⇒  m ⊕̂ n ≠ ∅   

we have ⊕𝑖 is commutative over Mi, since   𝑚𝑖 ⊕𝑖 𝑛𝑖 =  𝑚𝑖 ⊕𝑖 𝑛𝑖  

then m ⊕̂ n =  𝑚𝑖 ⊕𝑖 𝑛𝑖 =  𝑚𝑖 ⊕𝑖 𝑛𝑖 = n ⊕̂ m 

for all s, m, n ∈ P,  s  ⊕̂ ( m ⊕̂ n ) = ( s ⊕𝑖 (  𝑚𝑖 ⊕𝑖 𝑛𝑖 )), since ⊕𝑖 is associative  

                                                         ⇒ ( s ⊕𝑖  𝑚𝑖) ⊕𝑖 𝑛𝑖 

                                                         = (s  ⊕̂ m ) ⊕̂ n  

For all i ∈I, there exists 0𝑖 ∈ 𝑀𝑖, 0P = (0𝑖) then m ⊕̂  0P  = (  𝑚𝑖 ⊕𝑖 0𝑖)    = (𝑚𝑖) = m  

For all I there exists 𝑚̃ such that 0𝑖∈ (𝑚𝑖 ⊕𝑖  𝑚̃𝑖) defined  = (𝑚̃𝑖)i  then   0P ∈ ( m ⊕̂ 𝑚̃ )  

(We call the element 𝑚̃ the opposite of m)  

By satisfying the properties of a commutative hypergroup, then (P, ⊕̂ ) is a commutative hypergroup  

Second, we must prove that (P, ⊕̂  , ⊙̂ )  is an R-hypermodule.  

r ⊙̂ (m ⊕̂  n) = r  ⊙𝑖 (𝑚𝑖 ⊕𝑖   𝑛𝑖), since  ⊙𝑖  is distributive over  ⊕𝑖  then  

(r ⊙𝑖 𝑚𝑖) ⊕𝑖 (r ⊙𝑖 𝑛) = ( r ⊙̂  m )(r ⊙̂  n ) 

( r ⊕̂ s ) ⊙̂  m = ( r ⊕𝑖 s ) ⊙𝑖 m for all r, s ∈R m ∈M by axiom of M, we have 

( r ⊙𝑖 𝑚𝑖) ⊕𝑖 (s ⊙𝑖 𝑚𝑖) = ( r ⊙̂  m) ⊕̂  (s  ⊙̂ m) 

(rs) ⊙̂  m = (rs) ⊙𝑖 𝑚𝑖⊙ m by axiom of Mi we have (r ⊙𝑖 (s ⊙𝑖 m))   = (r  ⊙̂ (s ⊙̂  m ))  

since 1 ⊙𝑖  𝑚𝑖 = {(𝑚𝑖)} for all 1 ∈ R then 1 ⊙̂  m = m  

then (P, ⊕̂  , ⊙̂ ) are R-hypermodule.  

                                                                                 

Example 3.5. In Examples 2.3 and 2.5. , let 

𝑃 = ∏ 𝑀𝑖
3
𝑖=1 = 𝑀1 × 𝑀2 × 𝑀3={(𝑚1, 𝑚2, 𝑚3)  ∀ 𝑚𝑖 ∈  𝑀𝑖, 𝑖 = 1,2,3} 

   = {a, b}× {c, d} ×{f, g}={ (a,c,f), (a,c,g),(a,d,f), (a,d,g), (b,c,f), (b,c,g), (b,d,f), (b,d,g)}. By (3.1) the hyperoperation 

⊕̂  on P is defined as follows: 

 

 

https://doi.org/10.54361/ajmas.258445


Alqalam Journal of Medical and Applied Sciences. 2025;8(4):2417-2420 

https://doi.org/10.54361/ajmas.258445  

 

Copyright Author (s) 2025. Distributed under Creative Commons CC-BY 4.0 

Received: 19-08-2025 - Accepted: 19-10-2025 - Published: 26-10-2025    2420 

 

 

Then (P, ⊕̂) is a commutative hypergroup. 

Now. By (3,2) an acts ⊙̂: 𝑅 × 𝑃 → P*(𝑃) is defined by the following table: 

  

⊙̂ (a,c,f) (a,c,g) (a,d,f) (a,d,g) (b,c,f) (b,c,g) (b,d,f) (b,d,g) 

0 (a,c,f) (a,c,f) (a,c,f) (a,c,f) (a,c,f) (a,c,f) (a,c,f) (a,c,f) 

1 (a,c,f) (a,c,g) (a,d,f) (a,d,g) (b,c,f) (b,c,g) (b,d,f) (b,d,g) 

2 (a,c,f) (a,c,g) (a,d,f) (a,d,g) (b,c,f) (b,c,g) (b,d,f) (b,d,g) 

Then (P, ⊕̂, ⊙̂) is an R-hypermodule 

. 

Proposition 3.6.  The map πj : P →Mj  by  πj(𝑚𝑖)𝑖∈𝐼 = mj for j∈I, is a natural projection homomorphism.  

Proof. 

if  x ∈ m ⊕̂ n ⇒  𝑥𝑖 ∈ 𝑚𝑖 ⊕𝑖   𝑛𝑖  then π(m ⊕̂ n) = π(  𝑚𝑖 ⊕𝑖 𝑛𝑖 )  = π(𝑚𝑖 ) ⊕𝑖 π(𝑛𝑖)  

                                                                                            = π(m) ⊕̂  π(n)  

if  y ∈ r ⊙̂ m  ⇒  𝑦𝑖 ∈ r ⊙𝑖  𝑚𝑖  then π(r ⊙̂ m) = π( r ⊙𝑖  𝑚𝑖)  

                                                                    = r ⊙𝑖  π( 𝑚𝑖). 

 

Conclusion 
In this paper, we proved that, direct Product of R-hypermodules is an R-hypermodule, and that the 

canonical projections are hyperhomomorphisms. 
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