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Abstract 
Selecting optimal tuning parameters can enhance the accuracy of machine learning techniques, 
particularly when data exhibits heterogeneity and multicollinearity. Thus, this paper introduces a 
novel approach by combining elastic net penalized quantile regression (QRELN) with empirical mode 
decomposition (EMD). The EMD algorithm is used to decompose the non-stationary and nonlinear 

original time series predictor into a finite set of several intrinsic mode function components and one 
residual component. While elastic-net quantile regression (QRELN) offers more accurate estimations 
by addressing multicollinearity, heavy-tailed distributions, heterogeneity, and selection of the most 
important variables. The results of the numerical experiments and real data confirmed the superiority 
of the EMD. QRELN method with selecting the optimal tuning parameters. The proposed ELNET.QR 
αopt method also effectively identifies predictor variables that have the most significance on the 
response variable. 
Keywords. Elastic-net Regression, Empirical Mode Decomposition, Quantile Regression, Penalized 

Regression, Tuning Parameters, Heterogeneity, Cross-validation. 

 

Introduction 
In several scientific fields, relationships between natural processes are frequently investigated through 

regression analysis using time series data. Such data are frequently non-linear and non-stationary, resulting 
in low-accuracy regression models and thus making the results less reliable.  Non-linear and non-stationary 

time series data are addressed in regression through decomposing the time series data into intrinsic mode 

functions (IMF) through the empirical mode decomposition algorithm (EMD) [1]. Regression analysis plays 

a central role in statistical modelling, which is concerned with the study and relies on analyzing the 

relationship between a dependent variable and one or more explanatory variables. It is well known that the 

Ordinary Least Squares (OLS) approach is utilized to estimate the explanatory variables. However, in certain 
situations, it can be difficult to use due to the unavailability of one or all of its hypotheses, just as random 

errors are abnormal, meaning they do not follow a normal distribution [2]. 

Ordinary Least Squares (OLS) regression remains a foundational tool in statistical modeling and is widely 

used to fit the model, mainly because of tradition and ease of computation. However, its inherent 

assumptions, such as heterogeneity and the multicollinearity problem among the predictor variables, are 
often violated in real-world datasets. These violations can lead to biased estimates and unreliable 

predictions, thereby limiting the applicability of OLS in diverse research contexts. Consequently, researchers 

continuously strive to develop hybrid regression models to overcome these inherent limitations and enhance 

the performance of the OLS methodology [3]. In recent years, several novel regression methods have been 

developed that substantially enhance the ordinary least squares (OLS) method. The most popular 

regularization approach is penalized least squares regression. Examples include the Ridge [4], Lasso [5], 
SCAD [6], Elastic Net [7], Adaptive Lasso [8], and so on. However, because the least squares criteria are 

used, all of these approaches are not robust to outliers or heavy-tailed errors [9]. 

Quantile regression has been suggested as an appropriate substitute for Ordinary Least Squares. It is 

regarded as an extension of ordinary linear regression and a complement to the technique of least squares 

(OLS), which estimates the conditional distribution of the response variable at various locations.  It is the 
strongest against outliers and unusual numbers.  In addition, it minimizes the mean square error. Quantile 

regression is a popular technique for studying the relationship between a response variable and predictor 

variables at any quantile of the conditional distribution function. It provides a more comprehensive view of 

the phenomenon under study as it does not make any assumptions about the error term in the model [2,10].  

The quantile regression (QR) is used to give a comprehensive assessment of the covariate effects on the 

distribution of the response variable and can model the conditional quantile of the response variable given 
certain covariates across various quantile levels. Therefore, quantile regression offers a more comprehensive 

characterization of the error distribution and yields a resilient estimate against outliers without 

necessitating a specific distribution for the error component [10,11]. 

In the penalized regression models, the tuning parameter is an important component of any penalty function 

in enhancing penalized least squares estimators to get consistent selection and optimal estimates. It is often 
employed to balance the trade-off between model fitting and model sparsity, which largely affects the 

numerical performance and the asymptotic behavior of the penalized regression models [12,13]. 
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To choose the proper tuning parameter, the existing literature offers some frequently applied approaches, 

such as cross-validation (CV) [14], the Akaike information criterion (AIC) [15], and the Bayes information 

criterion (BIC) [16]. The cross-validation method is the simplest and most popular method for estimating the 

prediction error and selecting the tuning parameter with the minimum sum of squared residuals [17]. The 
CV technique involves presenting a grid of λ values and calculating the CV error for each λ after selecting 

the optimal λ with the lowest CV error [18,19]. 

The contribution of this paper is threefold. First, the current study aims to solve the problem of multi-scale 

time series data in regression by decomposing the series time data into intrinsic mode functions (IMF) 

through the empirical mode decomposition algorithm (EMD) [1]. The resulting IMFs represent the basic 

oscillation modes of time series data and can be utilized as variables in regression analyses. Secondly, to 
enhance the prediction accuracy of the model selection by choosing the predictor variables that have the 

most effect on the response variable. Subsequently, it is evaluated and compared with recently developed 

methods by both simulations and practical applications. Finally, with regard to the novelty of the 

econometrics aspect, we model and predict the daily closing of the stock market prices to address 

heterogeneous time series data. The rest of the article is organized as follows. In Section 2, after the 
introduction of some notation and the model. 

 

Methods 
This section briefly describes the methods used: elastic-net penalized quantile regression, empirical mode 
decomposition via a sifting process for signal decomposition, and optimal tuning parameter selection. This 

section also discusses the proposed EMD.QRELN method. 

 
Penalized quantile regression 

Quantile regression describes the relationship between the response variable and the predictor variables at 

any different quantile of the conditional distribution of the response variable𝒬𝜏(𝑦 𝑋⁄ ).Where 𝜏 represents the 

quantiles or percentiles and ranges from 0 to 1. 

The multiple linear regression model is given by,   

𝑦 = 𝑋𝛽 + 𝜀                                                                              (1) 

Where 𝑦 = (𝑦1 , 𝑦2, … … . 𝑦𝑛)𝑇 is a vector of the response variable, 𝑋 = (𝑥1, … … . . 𝑥𝑛)𝑇 is a matrix of the predictor 

variables, 𝛽 = (𝛽1, … … … … 𝛽𝑝)
𝑇
 is a vector of unknown regression coefficients, and is 𝜀 = (𝜀1, … … … … 𝜀𝑝)

𝑇
 is a 

vector of the random observation errors that are supposed to be normally distributed with and 𝐸(ε) = 0 and 

, 𝐸(𝛆𝛆𝑻) = 𝜎2𝚰𝒏.Where 𝑦 = (𝑦1, 𝑦2, … … . 𝑦𝑛)𝑇 is a vector of the response variable, 𝑋 = (𝑥1, … … . . 𝑥𝑛)𝑇 is a matrix of 

the predictor variables, 𝛽 = (𝛽1, … … … … 𝛽𝑝)
𝑇
 is a vector of unknown regression coefficients, and 𝜀 =

(𝜀1, … … … … 𝜀𝑝)
𝑇
 is a vector of the random observation errors that are supposed to be normally distributed 

with 𝐸(ε) = 0 and , 𝐸(𝛆𝛆𝑻) = 𝜎2𝚰𝒏. 

 

The linear quantile regression model assumes 

𝒬𝜏(𝑦 𝑋⁄ ) = 𝑋𝛽                                                                                        (2) 
Where 𝒬𝜏(𝑦 𝑋⁄ ) is the conditional quantile function for the 𝜏-𝑡ℎ conditional quantiles or percentiles with. 
(0 < 𝜏 < 1). The 𝜏-𝑡ℎ quantile regression estimator 𝛽   minimizes the objective function. Using the following 

formula [20]. 

𝛽̂𝜏 = min
𝛽

∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)                                                                      (3) 

Where 𝜌𝜏(𝑢) the loss function is defined as follows: Where 𝜌𝜏(𝑢) the loss function defined as follows: 

Under the regularization and to improve quantile regression,𝜌𝜏(𝑢) =

{
𝜏𝑢                𝑖𝑓  𝑢 > 0

(𝜏 − 1)𝑢          𝑖𝑓   𝑢 ≤ 0
                                                         (4) 

Koenker proposed a penalized version of the following: Under the regularization and to improve quantile 

regression, Koenker proposed penalized version of the following: 

𝛽̂𝜏 = min
𝛽

∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽) + 𝑃𝜆(𝛽)                                                      (5) 

Where is the tuning parameter, and 𝑃𝜆(𝛽) represents the penalty function. 

 

Elastic net penalized quantile regression 

The elastic-net regression is proposed by [7] to deal with the limitations of LASSO and enhance the 

interpretability of the model and accuracy prediction through combining the advantages of LASSO penalty 

and ridge penalty, which can effectively solve the problems of continuous contraction and automatic variable 
selection [10]. An elastic-net penalized quantile regression with applications [19]. The elastic net estimator 

is as follows: 
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𝛽̂𝐸𝑛𝑒𝑡 = min
𝛽

(𝑦𝑖 − 𝑥𝑖
𝑇β) + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2

2                                                        (6) 

Where  ‖𝛽‖2
2 = ∑ 𝛽𝑗

2𝑝
𝑗=1  is the 𝐿2-norm square of ‖𝛽‖2

2 = ∑ 𝛽𝑗
2𝑝

𝑗=1 e vector 𝛽, and ‖𝛽‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  is the 𝐿1-norm of 

the vector 𝛽. Where 𝜆1 and 𝜆2 are tuning parameters, (𝜆1, 𝜆2 ≥ 0), where these parameters control the amount 

of shrinkage for regression parameters, and they are automatically selected via cross-validation (CV) 

[7,𝐿20,19]. By denoting 𝜆1 = 2𝑛𝜆𝛼 and 𝜆2 = 𝑛𝜆(1 − 𝛼) then equation (2.31) is equivalent to the optimization 

problem as follows:-norm square of the vector 𝛽 and ‖𝛽‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  is the 𝐿1-norm of the vector 𝛽. Where 𝜆1 

and 𝜆2 are tuning parameters (𝜆1, 𝜆2 ≥ 0), where these parameters control the amount of shrinkage for 

regression parameters, and they are which are automatically selected via cross-validation (CV) [7,10,19]. By 

denoting 𝜆1 = 2𝑛𝜆𝛼 and 𝜆2 = 𝑛𝜆(1 − 𝛼) then equation (2.31) is equivalent to the optimization problem as the 

following: 

𝛽̂𝐸𝑛𝑒𝑡 = min
𝛽

∑(𝑦𝑖 − 𝑥𝑖
𝑇β) + 𝜆 ∑ (𝛼‖𝛽‖1 +

(1 − 𝛼)

2
‖𝛽‖2

2)

𝑝

𝑗=1

𝑛

𝑖=1

                              (7) 

Where 𝛼 ∈ [0,1] is a regularization parameter, when 𝛼 = 0𝛼 ∈ [0,1]a ridge penalty ∑ 𝛽𝑗
2𝑝

𝑗=1  and when 𝛼 = 1, we 

get a LASSO penalty ∑ |𝛽𝑗|
𝑝
𝑗=1 . is a regularization parameter, when 𝛼 = 0, we get a ridge penalty ∑ 𝛽𝑗

2𝑝
𝑗=1  and 

when 𝛼 = 1, we get LASSO penalty ∑ |𝛽𝑗|
𝑝
𝑗=1 . 

The elastic-net penalized quantile regression can be obtained by employing the quantile loss along with the 

Elastic-net penalty. The estimator for the elastic-net penalized quantile regression is as follows: 

𝛽̂𝑄𝑅𝐸𝑛𝑒𝑡 = 𝑚𝑖𝑛
𝛽

∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽) + 𝜆 [𝛼‖𝛽‖1 +

(1 − 𝛼)

2
‖𝛽‖2

2]                 (8)  

 

Empirical mode decomposition 
[1] suggested a novel empirical mode decomposition (EMD) technique for decomposing non-stationary and 

nonlinear signals into a finite number of intrinsic mode functions (IMFs) and residual components via the 
sifting process [21]. In this method, the time domain of the signals is unchanged. Each IMF must fulfil the 

following two conditions [22]:  

 1. The number of extrema values and zero crossings are equal or differs by at most one. 

2. The mean value of the envelope defined by the mean of the upper and lower envelopes must be zero. This 

ensures that each IMF represents a distinct oscillatory mode within the original signal. 
Satisfying these conditions secures that narrowband (single scale) IMFs permit the representation in (1) 

while also lending themselves to transmitting physically meaningful information [23]. Algorithm 1 

summarizes the steps for the extraction of IMFs from the original signal 𝑥(𝑡). 
 
Algorithm 1 Empirical Mode Decomposition 

Input: 𝑥(𝑡) 
1) Initialization𝑥(𝑡) = 𝑟0(𝑡), 𝑞 = 1 𝑎𝑛𝑑 𝑘 = 1. 

2) Identify all local maxima and minima. 

3) By using cubic spline interpolation, connect all local extrema to generate the upper 

envelope 𝑈𝑞(𝑡) and lower envelope 𝐿𝑞(𝑡), respectively. 

4) Find the mean envelope as: 𝑚𝑞(𝑡) =
𝑈𝑞(𝑡)+𝐿𝑞(𝑡)

2
 

5) Extract ℎ𝑞(𝑡) by using the relation:ℎ𝑞(𝑡) = 𝑥1(𝑡) − 𝑚𝑞(𝑡) 

6) Check if the ℎ𝑞(𝑡) satisfies the IMF conditions: 

▪ Yes, then ℎ𝑞(𝑡) = 𝐶𝑘(𝑡), save the output 𝐶𝑘(𝑡), and go to (7). 

▪ No: Let 𝑞 = 𝑞 + 1, and repeat the procedures from step 2. 

7) Calculate: 𝑟𝑘(𝑡) = 𝑟𝑘−1(𝑡) − 𝐶𝑘(𝑡) 
8) Check if 𝑟𝑘(𝑡) is a monotonic or constant function or satisfies the stopping criterion 

of the standard deviation: 𝑆𝐷𝑞 = ∑
ℎ𝑞−1(𝑡)−ℎ𝑞(𝑡)2

ℎ𝑞−1
2 (𝑡)

𝑇
𝑡=0  

 (A typical value for can be set between 0.2 and 0.3)𝑆𝐷𝑞 can be set between 0.2 and 0.3) 

▪ Yes:   Save 𝑟(𝑡), the sifting process stops. 

▪ No: continue the decomposition from step 2, setting 𝑘 = 𝑘 + 1. 

Output: 

𝐶1𝑘(𝑡) and 𝑟1(𝑡),     𝑘 = 1,2 … … . 𝐾 
The original signal 𝑥(𝑡) is expressed as the linear combination of the finite set of orthogonal IMF components 

and one residual component by the EMD algorithm, as indicated by the following Equation 1: 

𝑥(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡)𝐾
𝑘=1                                                                   (9) 

Where 𝑡  represents the sample index (time domain), intrinsic mode functions (IMFs) are denoted by 
{𝐶𝑘(𝑡), 𝑘 = 1,2, … . . 𝐾} and 𝑟(𝑡) is the residual component. 
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Choice of Optimal Tuning Parameter 

The tuning parameter 𝜆 plays an important role in the optimization issue for the mentioned penalized least 

squares estimators to obtain consistent selection and optimum estimate [13]. The Q-fold cross-validation 

algorithm is described in detail as follows: Firstly, the dataset is randomly split into Q folds of equal length. 

One of the Q-1 folds is assigned the role of the training set for the estimation of the model, while the 

remaining Q folds together constitute the test set to assess the predictive performance of the model. In 

practice, the number of Q folds is commonly set at 5 or 10. The process repeats until every Q-fold is used 

as the test set. Then, the MSE across all folds is determined [19,24]. 

𝑀𝑆𝐸𝑖,𝜆𝑠
=

1

𝑄
∑ 𝑅𝑆𝑆𝑖,𝜆𝑠

𝑄

𝑞=1

                                                                                 (10) 

where 𝑅𝑆𝑆𝑖,𝜆𝑠
= ∑ (𝑦𝑖 − 𝑓𝑑,𝜆𝑣

(𝑥𝑖))
2𝑛

𝑖=1  

The optimal 𝜆 that gives the minimum 𝑀𝑆𝐸𝑖,𝜆𝑠
 is expressed as follows: 

CVλs
=

1

𝑄
∑ 𝑀𝑆𝐸i,𝜆s

𝑄

𝑞=1

 

 

 

 

Iteration 1:   

Iteration 2:  

Iteration 3:   

…………………. 

Iteration 10:  

 

Figure 1. Illustrates the k-fold CV approach. 

(Figure 1) displays the procedure of Q-fold cross-validation. A set of n observations is divided randomly into 

five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder 
as a training set (shown in blue). The test error is estimated by taking the average of the five resulting MSE 

estimates. 

When the Q value increases leads to a reduction in the bias of the fit model, whereas the variance will rise, 

as will the fitted model's correlation, due to the overlap between the training sets [18]. In practice, the Q 

value is typically chosen by using Q =5 or Q =10, and these values yield estimates with an intermediate level 

of bias that is neither highly biased nor significantly variable. On. As a result, Q =5 or 10 includes the bias-

variance trade-off [18,25]. 
 

Proposed Elastic-net Penalized Quantile Regression Method 

To explain the significance of the predictor variables on the response variable and enhance the prediction 

error of the final model based on the optimal tuning parameters, we propose the following three-step Elastic-

net penalized quantile regression method based on EMD using 10-CV as follows: 
1. The original signals xj (t) are decomposed by EMD into several components, named 𝐶j𝑘(𝑡) and the 

residual component 𝑟j(𝑡). These decomposed components are as follows. 

𝑥𝑗(𝑡) = ∑ 𝐶𝑗𝑘(𝑡) + 𝑟𝑗(𝑡)

𝐾

𝑘=1

; 𝑗 = 1,2, … … . 𝑝 (11) 

2. All the decomposition components obtained in Step 1 are used as predictor variables to predict the 
behavior of the response variable as follows: 

𝑦(𝑡) = ∑ [∑ 𝐶𝑗𝑘𝛽𝑗𝑘 + 𝑟𝑗𝑘(𝑡)𝛽𝑗𝑘

𝐾

𝑘=1

] + 𝜀(𝑡)

𝑝

𝑗=1

(12) 

3. Select the optimal parameters via the Q-VD method at Q =10, using the training set only, as follows: 

▪ The value of the regularization parameter α𝑂𝑝𝑡𝑎𝑚𝑙 in the sequence, 0 < 𝛼 < 1, where αopt denotes 

the relative contribution of the 𝐿1 penalty versus the𝐿2 penalty. 

𝛼𝑜𝑝𝑡𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼𝑠∈(0,1)

(𝑀𝑆𝐸𝛼𝑠
) (13) 

Training Set 

𝑬𝟏 

𝑬𝟐 

𝑬𝟏𝟎 

𝑬𝟑 

𝑪𝑽 =
𝟏

𝑸
∑ 𝑬𝒊

𝑸

𝒊=𝟏

 

𝑭𝒐𝒓 𝒒 = 𝟏𝟎   

𝑪𝑽 =
𝟏

𝟏𝟎
∑ 𝑬𝒊

𝟏𝟎

𝒊=𝟏

 

 

Test Sets 
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𝑀𝑆𝐸𝛼𝑠
=

1

10
∑ 𝑅𝑆𝑆𝑞,𝛼𝑠

10

𝑞=1

 

▪ Where k is the number of α values between 0 < 𝛼 < that will be selected. In this study, we choose 

K = 50.0 < 𝛼 < that will be selected. In this study, we choose K = 50. 

𝜆𝑜𝑝𝑡𝑎𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠=1,2,….𝑆

(𝑀𝑆𝐸𝜆𝑠
) (14) 

𝑀𝑆𝐸𝜆𝑠,𝛼𝑜𝑝𝑡
=

1

10
∑ 𝑅𝑆𝑆𝑞,𝜆𝑠,𝛼𝑜𝑝𝑡

10

𝑞=1

 

Based on the training dataset, the Equations (7) and (10) at 𝛼opt and 𝜆𝑜𝑝𝑡, the ELN penalized regression is 

used follows formula: and 𝜆𝑜𝑝𝑡, the ELN penalized regression is used as the following formula: 

𝑚𝑖𝑛
𝛽

[
𝜌𝜏

𝑛
(𝑦(𝑡) − ∑(∑ 𝐶𝑗𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑗𝑘

𝑝

𝑗=1

− 𝑟𝑗(𝑡)𝛽𝑗𝑘+1))

2

] + 𝜆𝑜𝑝𝑡𝑃(𝛽) (15) 

; 𝜆𝑜𝑝𝑡𝑃(𝛽) = 𝜆𝑜𝑝𝑡 (𝛼𝑜𝑝𝑡 ∑ [∑ 𝛽𝑗𝑘
2

𝐾

𝑘=1

]

𝑝

𝑘=1

+
(1 − 𝛼𝑜𝑝𝑡)

2
∑ [∑ 𝛽𝑗𝑘

2

𝐾+1

𝑘=1

]

𝑝

𝑘=1

) 

Finally, an evaluation was performed between the proposed methods and traditional methods. Several well-

known criteria were employed to evaluate the efficacy of the proposed estimated method. The test criteria 

include root mean square error (RMSE), mean absolute error (MAE), mean absolute scaled error (MASE), 
and mean absolute percentage error (MAPE). 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

(16) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

𝑛

𝑖=1

 (17) 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑ (

|𝑦𝑖 − 𝑦̂𝑖|

1
𝑛 − 1

∑ |𝑦𝑖 − 𝑦𝑖−1|𝑛
𝑖=2

)

𝑛

𝑖=1

(18) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

(19) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

(20) 

𝑃𝐸 =
1

𝑛
∑ 𝜌𝜏(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

(21) 

 

NUMERICAL STUDIES  

In this section, we implement a simulation experiment and a real dataset application to evaluate the 
performance of the proposed method. The function of obtaining the optimal tuning parameter value for 

EMD.QRELN is calculated using the hqreg package and our developed code, and the analyses are performed 

using open-source R software. 

 

Simulation Study 

This section presents the results of the numerical simulation for the proposal methods and traditional 
methods, namely EMD. QRRidge, EMD.QRLASSO, EMD.QRELN at the optimal α value; EMD.QRELN at α = 

0.25, EMD.QRELN at α = 0.5, EMD.QRELN at α = 0.75 based on the minimum 𝑀𝑆𝐸 ￼ and minimum 𝑀𝑆𝐸 

with one standard error (𝜆1𝑠𝑒)  of weighted RR to evaluate and illustrate the performance of these methods 

of variable selection and prediction. The simulation scenarios were conducted with a sample size of 150, an 

iteration of 1000, under three different quantiles (τ = 0.25, 0.5, and 0.75). The optimal tuning parameter 

values were chosen based on 10-fold cross-validation. The simulated datasets were split into two sections: 

70% for training the model and 30% for testing and assessing performance criteria.𝑀𝑆𝐸 (𝜆𝑚𝑖𝑛) and minimum 

𝑀𝑆𝐸 with one standard error (𝜆1𝑠𝑒)  of weighted RR to evaluate and illustrate the performance of these 

methods of variable selection and prediction. The simulation scenarios were conducted with a sample size 

of 150, an iteration of 1000, under three different quantiles (τ = 0.25, 0.5, and 0.75). The optimal tuning 

parameter values were chosen based on 10-fold cross-validation. The simulated datasets were split into two 

sections: 70% for training the model and 30% for testing and assessing performance criteria. 
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Real data application 
In this section, we applied the daily close exchange rates from 27/03/2015 to 25/10/2019 of three countries 

against the US dollar (USD). The dataset selected three countries: Japan (JAP), China (CHN), and Taiwan 

(TAW). The datasets were collected from the Wall Street Journal database (https://www.wsj.com/). The 

datasets were divided into two parts: 70% for the training model and 30% for testing and assessing their 

performance criteria. 

Where 𝑦 represents the daily close exchange rates of TWA, 𝑥1 is the daily close exchange rates of JAP, and  

𝑥2 is the daily close exchange rates of CHA? 

 

Figure 2. The daily stock market Index is plotted over time 

 

Results and discussion 
This section presents the results of a simulation experiment and the application based on the real dataset. 
 

Simulation Results 

(Table 1) presents the mean of the performance criteria in terms of the MAE, RMSE, MASE, and MAPE used 

in this study for all regression methods at three different quantiles (τ = 0.25, 0.5, and 0.75). The results 

show that the proposed method, EMD.QRELN with 𝛼𝑜𝑏𝑡 (by identifying the optimal α value) and 𝜆𝑚𝑖𝑛, 

outperformed all the existing methods because they have the smallest values in these criteria tests. 

Therefore, the prediction accuracy is enhanced by ELNET.QR αopt, λmin, which provides the minimum error 

values in terms of RSS, RMSE, MAE, MASE, and MAPE., outperformed all the existing methods because 

they have the smallest values in these criteria tests. Therefore, the prediction accuracy is enhanced by 
ELNET.QR αopt, λmin, which provides the minimum error values in terms of RSS, RMSE, MAE, MASE, and 

MAPE. 
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Table 1. Mean performance criteria of the simulation scenarios. 

Methods 𝝀 EP RMSE MASE MAE MAPE 

 𝝉 = 𝟎. 𝟐𝟓 

EMD. QRRidge 
λmin 0.1354747      1.016512         0.7860301        0.8268522       6.608568         

λ1se 0.1478563      1.078948         0.8336665        0.8769640       6.557723         

EMD. QRLasso 
λmin 0.1394191      1.019281         0.7879936        0.8289927       6.699076         

λ1se 0.1500528      1.074465         0.8297050        0.8728321       6.568887         

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin 0.1371068      1.017489         0.7867084        0.8276115       7.219920         

λ1se 0.1460451      1.054101         0.8137576        0.8560514       6.698597         

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin 0.1380138 1.020055 0.7881625 0.8291776 6.877224 

λ1se 0.1462457 1.052600 0.8125428 0.8547959 6.961208 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin 0.1397449      1.026421         0.7928249        0.8340972       6.700799         

λ1se 0.1471747      1.057723         0.8164515        0.8588681       7.170749         

EMD.QRELN 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟔 
λmin 0.1362572      1.009522         0.7798265        0.8204369       6.640818         

λ1se 0.1467088      1.054956         0.8143385        0.8566673       6.887441         

𝝉 = 𝟎. 𝟓𝟎 

EMD. QRRidge 
λmin 3.032463e-03   0.859718 0.6510376        0.6851058       2.918828 

λ1se 2.146358e-03   0.913019 0.6943930        0.7305373       1.761690 

EMD. QRLasso 
λmin 3.932728e-03   0.848583      0.6468290        0.6807689       3.324123 

λ1se 2.879077e-03   0.886123 0.6756263        0.7109228       2.328907 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin 4.241935e-03   0.851485  0.6493875        0.6833685       3.477430 

λ1se 2.101237e-03   0.885263 0.6729727        0.7080891       2.156452 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin 3.897117e-03 0.853686 0.6507148 0.6847823   3.284174 

λ1se 2.326496e-03 0.882947 0.6720231 0.7071102     2.255543 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin 3.801264e-03   0.858101 0.6540390        0.6883073       3.134581 

λ1se 2.489620e-03   0.954355  0.7277213        0.7676498       1.418677 

EMD.QRELN 𝜶𝒐𝒑𝒕 = 𝟎. 𝟖𝟔 
λmin 4.105784e-03   0.846924 0.6447679        0.6785803       3.265480 

λ1se 2.255413e-03   0.883379 0.6723447        0.7075054       2.232432 

𝝉 = 𝟎. 𝟕𝟓 

EMD. QRRidge 
λmin    -0.3970951     1.017384         0.7918248        0.8343655       5.136426         

λ1se    -0.4301894   1.075527         0.8345374        0.8793584       4.867550         

EMD. QRLasso 
λmin -0.4116700     1.018935         0.7933204        0.8360795       5.323473         

λ1se -0.4398064    1.069951         0.8309145        0.8755198       4.936393         

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin -0.4068918     1.019832         0.7937584        0.8365548       5.450387         

λ1se -0.4261248     1.051185         0.8157785        0.8595705       4.835119         

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin -0.4095664     1.021791   0.7946008        0.8375085 5.333350   

λ1se -0.4269654 1.050048 0.8150850 0.8588723       4.892463 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin    -0.4143497     1.028696         0.7995473        0.8427360       5.217303         

λ1se -0.4303024     1.054455         0.8187435        0.8627467       4.954138         

EMD.QRELN 𝜶𝒐𝒑𝒕 = 𝟎. 𝟖𝟖 
λmin -0.4019126     1.008797         0.7847176        0.8269984       5.187865         

λ1se -0.4285027    1.051860         0.8164825        0.8603981       4.901385         

 

Table 2 presents the simulation results, including bias, RSS, the optimal λ selected via 10-fold cross-

validation, and the number of variables selected for both the proposed and existing methods. The RSS values 
indicate that EMD-QRELN consistently achieves the lowest bias and RSS across all quantile levels. For 

instance, at τ = 0.25, EMD-QRELN achieves (𝜆𝑚𝑖𝑛 = 0.02022903; RSS = 76.61081; Bias = 0.2989208; V.S= 

6); at τ = 0.5 (𝜆𝑚𝑖𝑛 = 0.03337871; RSS = 54.19229; Bias=0.00127988; V.S = 10); and at τ = 0.75 (𝜆𝑚𝑖𝑛 = 

0.01296830; RSS = 76.82955; Bias=0.2892633; V.S = 9).  
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Table 2. Coefficients estimation for the predictor variables and RSS error values. 

Methods 𝝀 Bias RSS V.S 

𝝉 = 𝟎. 𝟐𝟓 

EMD. QRRidge 
λmin=0.08322968 0.2953428 77.65669 𝑥1, 𝑥2, … 𝑥15 

λ1se=0.26282306 0.3509044 87.41933 𝑥1, 𝑥2, … 𝑥15 

EMD. QRLasso 
λmin=0.01161013 0.3130467 78.11064 𝑥2, 𝑥3, 𝑥4, 𝑥8, 𝑥9 

λ1se=0.05600237 0.3619752 86.80109 𝑥2, 𝑥3, 𝑥4, 𝑥9 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin=0.04933789 0.3028717 76.42391 𝑥1, 𝑥2, . . 𝑥10, 𝑥12 … 𝑥15 

λ1se=0.09895552 0.3428099 83.48341 𝑥2, 𝑥3, 𝑥4, 𝑥9 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin=0.02784309 0.3070468 76.47008 𝑥1, . . 𝑥5, 𝑥7 … 𝑥10 

λ1se=0.05755971 0.3437469 83.25182 𝑥2, 𝑥3, 𝑥4, 𝑥9 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin=0.02032597 0.3151610 76.77440 𝑥1, . . 𝑥5, 𝑥7 … 𝑥9 

λ1se=0.03955206 0.3484254 84.09256 𝑥2, 𝑥3, 𝑥4, 𝑥9 

EMD.QRELN 𝜶𝒐𝒑𝒕 =

𝟎. 𝟗𝟔 

λmin=0.02022903 0.2989208 76.61081 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥8, 𝑥9 

λ1se=0.03487594 0.3459302 83.62594 𝑥2, 𝑥3, 𝑥4, 𝑥9 

𝝉 = 𝟎. 𝟓𝟎 

EMD. QRRidge 
λmin=0.02211726 0.00114157 55.81352 𝑥1, 𝑥2, … 𝑥15 

λ1se=1.81807884 0.00078994 62.84169 𝑥1, 𝑥2, … 𝑥15 

EMD. QRLasso 
λmin=0.02701995 0.00135473 54.41795 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se= 0.08031309 0.00098826 59.26353 𝑥3, 𝑥4, 𝑥10, 𝑥11 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin=0.07075555 0.00138549 54.35201 𝑥1, … 𝑥8, 𝑥10 … , 𝑥14 

λ1se= 0.29337371 0.00092650 59.14409 𝑥3, 𝑥4, 𝑥10, 𝑥11 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin=0.04787929 0.00133206 54.19250 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se=0.17064744 0.00096175 58.83910 𝑥3, 𝑥4, 𝑥10, 𝑥11 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin=0.03827425 0.00128200 54.13750 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se=0.10389230 0.00096091 59.31439 𝑥3, 𝑥4, 𝑥10, 𝑥11 

EMD.QRELN 𝜶𝒐𝒑𝒕 =

𝟎. 𝟖𝟔 

λmin=0.03337871 0.00127988 54.19229 𝑥1, … 𝑥6, 𝑥8, 𝑥10, . . 𝑥12 

λ1se= 0.09625640 0.00099103 58.90156 𝑥3, 𝑥4, 𝑥10, 𝑥11 

𝝉 = 𝟎. 𝟕𝟓 

EMD. QRRidge 
λmin=0.10421747 0.2822218 78.15396 𝑥1, 𝑥2, … 𝑥15 

λ1se=0.58481486 0.3302069 87.27370 𝑥1, 𝑥2, … 𝑥15 

EMD. QRLasso 
λmin=0.03946173 0.3034389 78.41482 𝑥2, 𝑥3, 𝑥4 

λ1se=0.08157880 0.3458979 86.53654 𝑥2, … , 𝑥4 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 
λmin=0.02417963 0.2966097 76.69255 𝑥2, . . 𝑥5, 𝑥7, 𝑥9,…𝑥13, 𝑥15 

λ1se=0.14414876 0.3243388 83.40657 𝑥2, 𝑥3, 𝑥4 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 
λmin=0.02499314 0.3009045 76.73107 𝑥2, . . 𝑥5, 𝑥7, . . , 𝑥9, 𝑥12. . 𝑥15 

λ1se=0.11009433 0.3256795 83.23282 𝑥2, 𝑥3, 𝑥4 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin=0.01476259 0.3084323 77.07654 𝑥2, . . 𝑥5, 𝑥7,.., 𝑥9, 𝑥13. . 𝑥15 

λ1se=0.05938567 0.3312063 83.98675 𝑥2, 𝑥3, 𝑥4 

EMD.QRELN 𝜶𝒐𝒑𝒕 =

𝟎. 𝟖𝟖 

λmin=0.01296830 0.2892633 76.82955 𝑥2, . . 𝑥4, 𝑥7, … 𝑥9, 𝑥13. . 𝑥15 

λ1se=0.06255360 0.3281261 83.52446 𝑥2, 𝑥3, 𝑥4 

 
Application results 

(Figure 3) illustrates the RSS curves for determining the optimal alpha (αopt) at τ values of 0.25, 0.50, and 

0.75. The y-axis represents the estimated RSS, and the x-axis represents alpha values. The minimum RSS 

occurs at αopt = 0.96 when τ = 0.25 and at αopt = 0.92 when τ = 0.50 and 0.75. These results suggest that 

using the optimal alpha minimizes RSS more effectively than traditional methods employing fixed alpha 
values (e.g., 0.25, 0.5, 0.75) or methods like lasso and ridge regression. 
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Figure 3. 10-CV estimate plot for choosing 𝜶𝑶𝒑𝒕 of the EMD.QRELN (τ = 0.25, 0.50, 0.75). 

 

Figure 4 shows the 10-CV estimate plot of the EMD.QRELN with 𝛼𝑂𝑝𝑡 (𝛼𝑂𝑝𝑡 = 0.96, 0.92, and 0.92) and (τ = 

0.25, 0.50, and 0.75), respectively. The grey bars at each point represent 𝑀𝑆𝐸𝜆 plus and minus one standard 

error. The mean square error (𝑀𝑆𝐸) curve is shown by the red dotted line, which has one standard deviation 

band along the error bars. The y-axis represents the mean square error (MSE), whereas the x-axis represents 

the 𝑙𝑜𝑔 (𝜆). The upper horizontal line represents the nonzero coefficients selected at the 𝑙𝑜𝑔 (𝜆) value. The 

first vertical dotted line from the left indicates the point picked at minimal MSE, while the second vertical 

line indicates the point selected at minimum MSE using the one-standard-error (1se) criterion. The CV plot 

shows that increasing log(λ) leads to a reduction in the number of non-zero coefficients entering the final 

model. 
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Figure 4. 10-CV estimate of the MSE for the EMD.QRELN 𝜶𝒐𝒑𝒕 at 𝜏 = 0.25, 0.50, 0.75. 

Figure 5 shows the relationship between log(𝜆) and the selected nonzero coefficient estimation for the 

EMD.QRELN method at (0.96, 0.92, 0.92). The top part of the figure shows the number of non-zero 

coefficients in the regression model as a function of 𝑙𝑜𝑔 (𝜆𝑚𝑖𝑛). In each figure (from right to left), coefficient 

estimates shrink towards zero as 𝜆 increases. Effectively forcing unnecessary coefficients to zero (i.e., as 𝜆 

→ ∞, estimated coefficients → 0). For example, at 𝜏 = 0.25, the EMD.QRELN model with 𝛼 = 0.96 selected 

six nonzero coefficients at one 𝜆𝑚𝑖𝑛  value and four at 𝜆1se, indicating varying degrees of significance. 
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Figure 5. Coefficient estimates for the EMD.QRELN 𝜶𝒐𝒑𝒕 using a 10-CV. 

 

(Table 3) outlines the performance criteria used to evaluate the prediction accuracy of the proposed method 

in comparison to existing methods. This comparison utilizes RMSE, MAE, MASE, MAPE, and EP as 

measures of prediction accuracy. The proposed EMD. QRELNαOpt
 method provides the smallest error values 

across all three cases (τ = 0.25, 0.5, 0.75) for RMSE, MAE, and MASE. For example, at τ = 0.25, 𝜆𝑚𝑖𝑛 = 

0.0138165; at τ = 0.5, 𝜆𝑚𝑖𝑛 = 0.01843012; and at τ = 0.75, 𝜆𝑚𝑖𝑛 = 0.028021. The method achieves the smallest 

error values. While MAPE shows a different order at τ = 0.25 and 0.5, and MAE shows a second-best order 

at τ = 0.75, ELNET.QR αopt generally improves prediction accuracy by minimizing error values in RSS, 

RMSE, MAE, and MAPE. 

 

Table 3: Mean performance criteria. 
Methods 𝝀 EP RMSE MASE MAE MAPE 

𝝉 = 𝟎. 𝟐𝟓 

EMD. QRRidge 
λmin=0.1354017 0.0735 0.55123 3.45939 0.36182 0.81407 

λ1se=0.1438492 0.07918 0.5864 3.66863 0.38371 0.83219 

EMD. QRLasso 

λmin=0.0135401
7 

0.06305 0.48517 3.08717 0.32289 0.89202 

λ1se=0.01673463 0.06503 0.49939 3.17824 0.33242 0.89774 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 

λmin=0.0541606
7 

0.06444 0.49474 3.12984 0.32735 0.86546 

λ1se=0.01607335 0.06762 0.51287 3.2439 0.33928 0.85952 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 

λmin=0.0270803
3 

0.06328 0.48793 3.09617 0.32383 0.88119 

λ1se=0.03247165 0.06572 0.50348 3.19121 0.33377 0.87424 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin=0.0180535

6 
0.06313 0.48609 3.09007 0.32319 0.88821 
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λ1se=0.02100252 0.06668 0.50768 3.23313 0.33816 0.89992 

EMD.QRELN 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟔 
λmin=0.0138165 0.06304 0.48515 3.08711 0.32288 0.89141 

λ1se=0.06494329 0.06534 0.50097 3.18821 0.33344 0.89682 

𝝉 = 𝟎. 𝟓𝟎 

EMD. QRRidge 
λmin=0.1695571 0.06801 0.52125 3.40035 0.34846 0.84132 

λ1se=0.2294738 0.08317 0.57054 3.79436 0.38884 0. 82041 

EMD. QRLasso 

λmin=0.0169557
1 

0.0244 0.40836 2.74748 0.28156 1.14219 

λ1se=0.03723923 0.03269 0.42369 2.88446 0.2956 1.17641 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 

λmin=0.0678228
5 

0.03961 0.43336 2.85506 0.29258 1.03605 

λ1se=0.03927092 0.04498 0.44516 2.93077 0.30034 1.01776 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 

λmin=0.0339114
2 

0.02673 0.41285 2.74837 0.28165 1.10681 

λ1se=0.05846513 0.03499 0.42615 2.8485 0.29191 1.10151 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 

λmin=0.0226076
2 

0.02532 0.40987 2.74696 0.28159 1.13113 

λ1se=0.04534342 0.03486 0.42972 2.93003 0.30027 1.18098 

EMD.QRELN, 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟐 
λmin=0.0184301

2 
0.02464 0.40816 2.74119 0.28153 0.73915 

λ1se=0.09178954 0.03283 0.42359 2.8771 0.29484 1.16689 

𝝉 = 𝟎. 𝟕𝟓 

EMD. QRRidge 
λmin=0.168767 0.17635 0.56355 4.58799 0.45898 1.09035 

λ1se=0.2354216 0.24466 0.66383 5.64775 0.565 1.30945 

EMD. QRLasso 

λmin=0.0257793
2 

0.11629 0.42697 3.33352 0.33348 1.08985 

λ1se=0.03937817 0.11899 0.43157 3.39963 0.3401 1.11112 

EMD.QRELN 𝜶 = 𝟎. 𝟐𝟓 

λmin=0.0675067
9 

0.11071 0.43413 3.34309 0.33444 0.98719 

λ1se=0.1062853 0.12863 0.4588 3.59212 0.35935 0.97209 

EMD.QRELN 𝜶 = 𝟎. 𝟓𝟎 

λmin=0.0429982
9 

0.11357 0.42776 3.31359 0.33149 1.04772 

λ1se=0.06769818 0.11637 0.43459 3.39245 0.33938 1.03633 

EMD.QRELN 𝜶 = 𝟎. 𝟕𝟓 
λmin=0.0333479 0.11476 0.42703 3.3251 0.33264 1.07069 

λ1se=0.05093925 0.12634 0.4423 3.50261 0.3504 1.11158 

EMD.QRELN 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟐 
λmin=0.028021 0.11035 0.42701 3.32218 0.33035 1.03423 

λ1se=0.04280236 0.11882 0.43204 3.4005 0.34019 1.10142 

 

Table 4 shows the results of the bias, RSS, number of variable selections, and values of the tuning parameter 

𝜆 of the proposed method and the previous methods. Based on RSS values, the EMD.QRELN method 

achieved the lowest RSS among all methods tested with αopt = 0.96: at τ = 0.25 (𝜆𝑚𝑖𝑛 = 0.0138165; RSS = 

332.1661; V.S = 6) and τ = 0.5 (𝜆𝑚𝑖𝑛 = 0.01843012; RSS = 96.07629; V.S = 10). However, at τ = 0.75 (𝜆𝑚𝑖𝑛 = 

0.028021; RSS = 105.8748; V.S = 9), its RSS value was the smallest. 

According to the findings in the preceding section, we will utilize the ELNET.QR αopt calculated coefficients 

to elucidate the final model as illustrated in (Table 4), as it demonstrates greater consistency in RMSE, MAE, 

MAPE, and MASE metrics. In conclusion, increased stationary time series data enhances prediction 

performance, motivating efforts to improve data stationarity for greater accuracy. Accuracy significantly 
improves when EMD multi-scale data decomposition is used across all methods. Hybrid methods 

incorporating EMD outperform existing methods, yielding models with reduced multicollinearity, 

heterogeneity, and prediction error. 

 

Table 4: Coefficients estimation for the predictor variables and RSS error values. 
Methods 𝝀 Bias RSS V.S 

𝝉 = 𝟎. 𝟐𝟓 

EMD.RidgeQR λmin=0.1354017 0.103595 380.1965 𝑥1, 𝑥2, … 𝑥15 

λ1se=0.1438492 0.107133 382.3293 𝑥1, 𝑥2, … 𝑥15 

EMD.LassoQR λmin=0.01354017 0.026606 333.1223 𝑥2, 𝑥3, 𝑥4, 𝑥8, 𝑥9 

λ1se=0.01673463 0.027609 332.7955 𝑥2, 𝑥3, 𝑥4, 𝑥9 

ElastcNetQR 𝜶 = 𝟎. 𝟐𝟓 λmin=0.05416067 0.031945 337.3951 𝑥1, 𝑥2, . . 𝑥10, 𝑥12 … 𝑥15 

λ1se=0.01607335 0.034583 336.032 𝑥2, 𝑥3, 𝑥4, 𝑥9 

ElastcNetQR 𝜶 = 𝟎. 𝟓𝟎 λmin=0.02708033 0.029219 336.0339 𝑥1, . . 𝑥5, 𝑥7 … 𝑥10 

λ1se=0.03247165 0.031175 336.7401 𝑥2, 𝑥3, 𝑥4, 𝑥9 

ElastcNetQR 𝜶 = 𝟎. 𝟕𝟓 λmin=0.01805356 0.027283 332.7136 𝑥1, . . 𝑥5, 𝑥7 … 𝑥9 

λ1se=0.02100252 0.029897 346.8505 𝑥2, 𝑥3, 𝑥4, 𝑥9 
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ElastcNetQR , 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟔 λmin=0.0138165 0.02652 332.1661 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥8, 𝑥9 

λ1se=0.06494329 0.027355 332.9736 𝑥2, 𝑥3, 𝑥4, 𝑥9 

𝝉 = 𝟎. 𝟓𝟎 

EMD.RidgeQR λmin=0.1695571 0.018503 157.8592 𝑥1, 𝑥2, … 𝑥15 

λ1se=0.2294738 0.02767 189.1258 𝑥1, 𝑥2, … 𝑥15 

EMD.LassoQR λmin=0.01695571 0.002381 96.88562 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se=0.03723923 0.004273 104.2974 𝑥3, 𝑥4, 𝑥10, 𝑥11 

ElastcNetQR 𝜶 = 𝟎. 𝟐𝟓 λmin=0.06782285 0.006275 109.1128 𝑥1, … 𝑥8, 𝑥10 … , 𝑥14 

λ1se=0.03927092 0.004862 115.1375 𝑥3, 𝑥4, 𝑥10, 𝑥11 

ElastcNetQR 𝜶 = 𝟎. 𝟓𝟎 λmin=0.03391142 0.002859 99.02917 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se=0.05846513 0.008093 105.5105 𝑥3, 𝑥4, 𝑥10, 𝑥11 

ElastcNetQR 𝜶 = 𝟎. 𝟕𝟓 λmin=0.02260762 0.002565 97.71988 𝑥1, … 𝑥8, 𝑥10 … 𝑥12, 𝑥14 

λ1se=0.04534342 0.004897 107.2894 𝑥3, 𝑥4, 𝑥10, 𝑥11 

ElastcNetQR , 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟐 λmin=0.01843012 0.002428 96.07629 𝑥1, … 𝑥6, 𝑥8, 𝑥10 , . . 𝑥12 

λ1se=0.09178954 0.004313 104.2471 𝑥3, 𝑥4, 𝑥10, 𝑥11 

𝝉 = 𝟎. 𝟕𝟓 

EMD.RidgeQR λmin=0.168767 0.05529 184.5164 𝑥1, 𝑥2, … 𝑥15 

λ1se=0.2354216 0.106413 256.0331 𝑥1, 𝑥2, … 𝑥15 

EMD.LassoQR λmin=0.02577932 0.024043 105.9191 𝑥2, 𝑥3, 𝑥4 

λ1se=0.03937817 0.025172 108.2116 𝑥2, … , 𝑥4 

ElastcNetQR 𝜶 = 𝟎. 𝟐𝟓 λmin=0.06750679 0.02179 109.5 𝑥2, . . 𝑥5, 𝑥7, 𝑥9,…𝑥13, 𝑥15 

λ1se=0.1062853 0.029412 122.2996 𝑥2, 𝑥3, 𝑥4 

ElastcNetQR 𝜶 = 𝟎. 𝟓𝟎 λmin=0.04299829 0.022932 106.3106 𝑥2, . . 𝑥5, 𝑥7, . . , 𝑥9, 𝑥12. . 𝑥15 

λ1se=0.06769818 0.024076 109.7326 𝑥2, 𝑥3, 𝑥4 

ElastcNetQR 𝜶 = 𝟎. 𝟕𝟓 λmin=0.0333479 0.023412 106.1299 𝑥2, . . 𝑥5, 𝑥7,.., 𝑥9, 𝑥13 . . 𝑥15 

λ1se=0.05093925 0.028379 113.6597 𝑥2, 𝑥3, 𝑥4 

ElastcNetQR , 𝜶𝒐𝒑𝒕 = 𝟎. 𝟗𝟐 λmin=0.028021 0.023901 105.8748 𝑥2, . . 𝑥4, 𝑥7, … 𝑥9, 𝑥13. . 𝑥15 

λ1se=0.04280236 0.025092 108.4483 𝑥2, 𝑥3, 𝑥4 

 

Conclusion 
This study introduces a hybrid EMD-QRELN method that uses non-stationary and nonlinear predictor 

variables to identify which components from the EMD of the original predictors have the greatest effect on 

the response variable. The EMD. The QRELN method is predicated on the selection of the optimal alpha 

value 𝛼𝑂𝑝𝑡 through a cross-validation approach. This approach is used to identify relationships between 

predictor variables and response variables to enhance model selection accuracy and address issues such as 

heavy-tailed distributions, heterogeneity, and multicollinearity in predictor variables by selecting the optimal 
alpha value. The results of the numerical experiments and stock market applications prove that the 

𝐸𝑀𝐷. 𝑄𝑅𝐸𝐿𝑁𝛼𝑂𝑝𝑡
 is highly capable of identifying predictor variables that have the most significance on the 

response variable, resulting in reduced prediction errors at τ = 0.25, 0.5, and 0.75. Furthermore, it 

demonstrated that not all alpha values are suitable for Elastic Net, making cross-validation the preferred 

method for selecting the optimal alpha value for the final model. 
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