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Abstract 

The zero-divisor graph 𝛤(𝑍𝑛) is constructed by taking the nonzero zero-divisor of a commutative 

ring 𝑍𝑛 as vertices, with the edges connecting two vertices if their product is zero in 𝑍𝑛. In this 

paper, we investigate  𝛼′(𝛤(𝑍𝑛)) and 𝛼(𝛤(𝑍𝑛)), the matching number and independence number 

of the zero-divisor graph 𝛤(𝑍𝑛), respectively,  for several values of 𝑛, when 𝑛 = 𝑘𝑞, with integer 

𝑘 ∈ {2, 3, 5, 7}, and when 𝑛 = 𝑝𝑞, where 𝑝 and 𝑞 are distinct prime numbers and 𝑝 < 𝑞. We prove 

that in these cases, the graph 𝛤(𝑍𝑛) is isomorphic to  complete bipartite graphs, which allows 

for the exact determination of 𝛼′(𝛤(𝑍𝑛)) and 𝛼(𝛤(𝑍𝑛)). This study demonstrates the relationship 

between the algebraic structure of  𝑍𝑛 and the graph-theoretic properties of its zero-divisor 

graph.  
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Introduction  
The intersection of algebra and graph theory has created a useful area of study where algebraic structures 

can be understood using graph-based methods. One of these studies was introduced by I. Beck in 1988 [1]. 

Let 𝑍𝑛denote a commutative ring. Define  𝛤(𝑍𝑛) to be a graph with vertex set 𝑉(𝛤(𝑍𝑛) = 𝑍𝑛 and   the vertices 

𝑢 and 𝑣  of 𝛤(𝑍𝑛 ) are adjacent if  𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (𝑛), otherwise 𝑢, 𝑣 are non-adjacent. This study and other 

studies motivated the work of D. Anderson and P. Livingston in [2], who investigated the connectivity of a 
zero-divisor graph with a small diameter and characterized the rings whose zero-divisor graph is a complete 

or a star. In 2012, R. Sankar, J, and Meena [3] evaluated the connected domination number of 𝑍𝑛 in some 

cases of n. They characterized the domination number 𝛾(𝛤(𝑍𝑛)) of graphs to find out  𝛾(𝛤(𝑍𝑛)) = 𝛾𝑐(𝛤(𝑍𝑛)), and 

they found out that 𝑚 is the connected domination number of 𝛤(𝑍𝑝1
𝑒1×𝑝2

𝑒2×…×𝑝𝑚
𝑒𝑚). In [4], S. Suthar and O. 

Prakash studied matchings in 𝛤(𝑍𝑛 ) and in the line graph  𝐿(𝛤(𝑍𝑛)) of 𝛤(𝑍𝑛) . In the same paper, they studied 

the relationship between the perfect graph and perfect matching. The previous studies motivate us to prove 

the following main theorem of this paper, which evaluates the stability number 𝛼(𝛤(𝑍𝑛)) and the matching 

number 𝛼′(𝛤(𝑍𝑛)) of 𝛤(𝑍𝑛).  

Theorem 1.1. Let 𝛤(𝑍𝑛)  be a zero-divisor graph and  𝑝, 𝑞 are prime numbers with 𝑝 < 𝑞. If 𝑛 = 𝑝𝑞,  then 

𝛼(𝛤(𝑍𝑛)) = 𝑞 − 1 and 𝛼′(𝛤(𝑍𝑛)) = 𝑝 − 1. 

Throughout this paper, we follow [5] for undefined terms for graphs. A graph 𝐺 is an ordered pair  (𝑉(𝐺), 𝐸(𝐺)) 
where  𝑉(𝐺) is   a nonempty set of vertices of 𝐺 and 𝐸(𝐺) is a set of edges. A link is an edge 𝑒 in a graph 𝐺 

incident with vertices 𝑢 and 𝑢, define 𝑉(𝑒)  =  {𝑢, 𝑣}. For a nonempty subset of vertices  𝑆 ⊆ 𝑉(𝐺), let 𝐺[𝑆] 
denote the subgraph of 𝐺 induced by 𝑆. A subset 𝑆 of  𝑉(𝐺)  is called a stable set of 𝐺 if there are no edges 

between any pair of vertices of 𝑆. A stable set in a graph 𝐺 is maximum if the graph contains no larger stable 

set. The cardinality of a maximum stable set in a graph 𝐺 is called the stability number of 𝐺, denoted 𝛼(𝐺). 

A matching in a graph 𝐺 is a set of pairwise nonadjacent links. A maximum matching of 𝐺 is the matching 

that covers as many vertices as possible. The number of edges in a maximum matching of a graph 𝐺 is called 

the matching number of 𝐺 and denoted 𝛼′(𝐺). For a graph 𝐺, let  𝑀 be a matching in a graph 𝐺. An 

𝑀 −alternating path in 𝐺 is a path whose edges are alternately in 𝑀 and 𝐸\𝑀. An 𝑀 -alternating path might 

or might not start or end with edges of 𝑀. If neither its origin nor its terminus is covered by M the path is 

called an 𝑀 −augmenting path.  

The following theorem is the fundamental theorem, known as Berge’s theorem, which shows an important 

connection between maximum matchings and 𝑀 −augmenting paths. 

Theorem 1.2. (Berge [6]) A matching 𝑀 of a graph 𝐺 is a maximum matching if and only if 𝐺 does not have 

𝑀 −augmenting paths.  

Proof of Theorem 1.1.  

Lemma 2.1. Let 𝐺 be a complete bipartite graph with partition sets 𝑆 and 𝑇 where |𝑆| = 𝑛 and |𝑇| = 𝑚 and 

𝑛 ≠ 𝑚. Then 𝛼(𝐺) = {𝑛, 𝑚}  and 𝛼′(𝐺) = {𝑛, 𝑚} . 

Proof: Assume 𝑛 <  𝑚. As 𝑆 and 𝑇 are independent sets, obviously that 𝛼(𝐺) = 𝑚. Let 𝑀 be a maximum 

matching of 𝐺. As 𝐺 is a bipartite graph, then for any 𝑒 ∈ 𝑀, |𝑉(𝑒) ∩ 𝑆| = 1 and |𝑉(𝑒) ∩ 𝑇| = 1, so all the vertices 

of 𝑆 must be covered by 𝑀. It follows  𝑛 ≤ |𝑀|.  By a contradiction, we assume that 𝑀 be a maximum matching 

of 𝐺 with |𝑀| = 𝑛 + 1 where 𝑛 + 1 ≤ 𝑚. Assume 𝑀 = {𝑒𝑖 = 𝑢𝑖𝑣𝑖 :  𝑢𝑖 ∈ 𝑆, 𝑣𝑖 ∈ 𝑇 for 𝑖 ∈ {1, 2, … , 𝑛 + 1}}. Consider the 

edge 𝑒𝑛+1 = 𝑢𝑛+1𝑣𝑛+1 ∈ 𝐸(𝐺) ∩ 𝑀. By the definition of 𝐺 and the size of 𝑆, then the vertex 𝑢𝑛+1 = 𝑢𝑘 for some 

𝑘 ∈ {1, 2, … , 𝑛}, let 𝑢𝑛+1 = 𝑢1. As 𝑢1𝑣𝑛 , 𝑢𝑛𝑣𝑛+1 ∈ 𝐸(𝐺) − 𝑀 and 𝑒𝑛+1 = 𝑢1𝑣𝑛+1 ∈ 𝑀, then set of edges 

{𝑢1𝑣𝑛 , 𝑢1𝑣𝑛+1, 𝑢𝑛𝑣𝑛+1} induces an 𝑀-augmenting path. Since 𝑀 is a maximum matching, by Theorem 1.2, 𝐺 
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does not have an 𝑀-augmenting path, thus the edge 𝑒𝑛+1 ∉ 𝑀. Therefore |𝑀| = 𝑛 = 𝛼′(𝐺). ∎  

 

Throughout this paper, we assume that all the zero divisor graphs over 𝑍𝑛 are simple and do not contain the 

vertex 0. For prime numbers  𝑝 and 𝑞. 

Theorem 2.2. Let 𝛤(𝑍𝑛)  be a zero-divisor graph. If 𝑛 = 2𝑞 where 𝑞 > 2, then 𝛼 (𝛤(𝑍2𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍2𝑞)) =

1. 

Proof:  Let 𝑉 = {𝑞, 2, 4, 6, … , 2(𝑞 − 1)} be the vertex set of a zero-divisor graph 𝛤(𝑍2𝑞). Let 𝑢 = 𝑞 and for any 𝑣 ∈

{2, 4, … ,2(𝑞 − 1)}, 𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (2𝑞), thus 𝑢𝑣 ∈ 𝐸 (𝛤(𝑍2𝑞)). For any 𝑣, 𝑣′ ∈ {2, 4, … , 2(𝑞 − 1)},  𝑣𝑣′ ≢ 0 𝑚𝑜𝑑 (2𝑞), so 

𝑣𝑣′ ∉ 𝐸 (𝛤(𝑍2𝑞)), it implies that {2, 4, … ,2(𝑞 − 1)} is a stable set.  Therefore, 𝑉1 = {𝑞} and 𝑉2 = {2, 4, … , 2(𝑞 − 1)} 

are the partition sets of 𝑉 (𝛤(𝑍2𝑞)), thus 𝛤(𝑍2𝑞) is an isomorphic to the complete bipartite graph 𝐾1,𝑞−1. As 

|𝑉1| = 1 and |𝑉2| = 𝑞 − 1 > 1, by Lemma 2.1, 𝛼 (𝛤(𝑍2𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍2𝑞)) = 1. Which completes the proof of 

Theorem 2.2.∎         

Theorem 2.3 Let 𝛤(𝑍𝑛)  be a zero-divisor graph. If 𝑛 = 3𝑞 where 𝑞 > 3, then 𝛼 (𝛤(𝑍3𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍3𝑞)) =

2. 

Proof:  Let 𝑉 = {𝑞, 2𝑞, 3, 6, 9, … , 3(𝑞 − 1)} be the vertex set of zero divisor graph 𝛤(𝑍3𝑞). By the definition of zero-

divisor graph 𝛤(𝑍3𝑞), 𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (3𝑞),   for any 𝑢 ∈ {𝑞, 2𝑞} and for any 𝑣 ∈ {3, 6, 9, … ,3(𝑞 − 1)}, so 𝑢𝑣 ∈ 𝐸 (𝛤(𝑍3𝑞)).  

As 𝑞. 2𝑞 = 2𝑞2 ≢ 0  𝑚𝑜𝑑 (3𝑞) , then the set of vertices 𝑉1 = {𝑞, 2𝑞} is a stable set of 𝛤(𝑍3𝑞) of size 2. Likewise, for 

any 𝑣, 𝑣′ ∈ {3, 6, 9, … ,3(𝑞 − 1)},  𝑣𝑣′ ≢ 0  𝑚𝑜𝑑 (3𝑞), so the set of vertices 𝑉2 = {3, 6, 9, … , 3(𝑞 − 1)} is a stable set 

of  𝛤(𝑍3𝑞) of size 𝑞 − 1 > 3, where 𝑉1 ∪ 𝑉2 = 𝑉 (𝛤(𝑍3𝑞)).  So, 𝑉1, 𝑉2 are the partition sets of 𝑉 (𝛤(𝑍3𝑞)), thus 𝛤(𝑍3𝑞) 

is an isomorphic to the complete bipartite graph 𝐾2,𝑞−1. By Lemma 2.1, 𝛼 (𝛤(𝑍3𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍3𝑝)) = 2.∎ 

Theorem 2.4. Let 𝛤(𝑍𝑛)  be a zero-divisor graph. If 𝑛 = 5𝑞 where 𝑞 > 5, then 𝛼 (𝛤(𝑍5𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍5𝑞)) =

4. 

Proof:  Let 𝑉 = {𝑞, 2𝑞, 3𝑞, 4𝑞, 5, 10, … , 5(𝑞 − 1)} be the vertex set of zero divisor graph 𝛤(𝑍5𝑞). By the definition of 

zero-divisor graph 𝛤(𝑍5𝑞), 𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (5𝑞),   for any 𝑢 ∈ {𝑞, 2𝑞, 3𝑞, 4𝑞} and for any 𝑣 ∈ {5, 10, … , 5(𝑞 − 1)}, so 𝑢𝑣 ∈

𝐸 (𝛤(𝑍5𝑞)). And for any vertices 𝑢, 𝑢′ ∈ 𝑉1 = {𝑞, 2𝑞, 3𝑞, 4𝑞}, 𝑢𝑢′ ≢ 0  𝑚𝑜𝑑 (5𝑞) , So the vertex set 𝑉1 is a stable set 

of size 4. Likewise, for any 𝑣, 𝑣′ ∈ 𝑉2 = {5, 10, … , 5(𝑞 − 1)}, 𝑣𝑣′ ≢ 0  𝑚𝑜𝑑 (3𝑞)  , so 𝑉2 is a stable set of size 𝑞 − 1. 

As  𝑉1, 𝑉2 are the partition sets of 𝑉 (𝛤(𝑍5𝑞)), then 𝛤(𝑍5𝑞) is isomorphic to the complete bipartite graph 𝐾4,𝑞−1. 

By Lemma 2.1, 𝛼 (𝛤(𝑍5𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍5𝑞)) = 4.∎  

Theorem 2.5.  Let 𝛤(𝑍𝑛)  be a zero-divisor graph. If 𝑛 = 7𝑞 where 𝑞 > 7, then 𝛼 (𝛤(𝑍7𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍7𝑞)) =

6. 

Proof:  

Let 𝑉 =  {𝑞, 2𝑞, 3𝑞, 4𝑞, 5𝑞, 6𝑞, 7, 14, … , 7(𝑞 − 1)} be the vertex set of the zero-divisor graph 𝛤(𝑍7𝑞). By the definition 

of a zero-divisor graph 𝛤(𝑍7𝑞), 𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (7𝑞)   for any 𝑢 ∈ {𝑞, 2𝑞, 3𝑞, 4𝑞, 5𝑞, 6𝑞} and for any 𝑣 ∈

{7, 14, … , 7(𝑞 − 1)}, so 𝑢𝑣 ∈ 𝐸 (𝛤(𝑍7𝑞)). Otherwise, for any vertices 𝑢, 𝑢′ ∈ 𝑉1 = {𝑞, 2𝑞, 3𝑞, 4𝑞, 5𝑞, 6𝑞}, 𝑢𝑢′ ≢

0  𝑚𝑜𝑑 (7𝑞) , which implies 𝑢𝑢′ ∉ 𝐸 (𝛤(𝑍7𝑝)), so the vertex set 𝑉1 is a stable set of size 6. Likewise, for any 

𝑣, 𝑣′ ∈ 𝑉2 = {7, 14, … , 7(𝑞 − 1)}, 𝑣𝑣′ ≢ 0  𝑚𝑜𝑑 (7𝑞) , which implies 𝑣𝑣′ ∉ 𝐸 (𝛤(𝑍7𝑞)), so 𝑉2  is a stable set of size 𝑞 −

1. Since 𝑉1, 𝑉2 are the partition sets of 𝛤(𝑍7𝑞), thus 𝛤(𝑍7𝑞) is isomorphic to the complete bipartite graph 𝐾6,𝑞−1. 

By Lemma 2.1, 𝛼 (𝛤(𝑍7𝑞)) = 𝑞 − 1 and 𝛼′ (𝛤(𝑍7𝑞)) = 6. ∎ 

To prove Theorem 1.1, let 𝛤(𝑍𝑛)  be a zero-divisor graph, if 𝑛 = 𝑝𝑞 where  𝑝, 𝑞 are prime numbers with 𝑞 > 𝑝 >
2.  Assume 𝑉 = {𝑝, 2𝑝, … , 𝑝(𝑞 − 1), 𝑞, 2𝑞, … , 𝑞(𝑝 − 1)}, be the vertex set of the zero-divisor graph 𝛤(𝑍𝑝𝑞). Note that 

for any 𝑢 ∈ 𝑉1 = {𝑝, 2𝑝, … , 𝑝(𝑞 − 1)}, and for any 𝑣 ∈ 𝑉2 = {𝑞, 2𝑞, … , 𝑞(𝑝 − 1)} , 𝑢𝑣 ≡ 0  𝑚𝑜𝑑 (𝑝𝑞) , so 𝑢𝑣 ∈ 𝐸 (𝛤(𝑍𝑝𝑞)). 

Thus, every vertex in 𝑉1 is adjacent to every vertex in 𝑉2. Moreover, for any two vertices 𝑢, 𝑢′ ∈ 𝑉1, 𝑢𝑢′ ≢
0  𝑚𝑜𝑑 (𝑝𝑞) . Thus the vertex set 𝑉1 is a stable set of size 𝑞 − 1. Similarly, 𝑉2 is a stable set of size 𝑝 − 1. 

Therefore, the zero-divisor graph 𝛤(𝑍𝑝𝑞) is isomorphic to the complete bipartite graph 𝐾𝑝−1,𝑞−1. As 𝑝 < 𝑞, by 

Lemma 2.1, 𝛼 (𝛤(𝑍𝑝𝑞)) = 𝑞 − 1 and 𝛼′(𝛤(𝑍𝑛)) = 𝑝 − 1. This completes Theorem 1.1.∎ 

 
Conclusion 

This study determined the matching number investigated and the stability number of the zero-divisor graph 

over for, with integer, and for where and are distinct prime numbers, and we proved that these graphs are 
isomorphic to a complete bipartite graph. The results show a strong connection between the algebraic 

structure of and the way its zero divisors behave, providing a useful basis for exploring other related graph 

properties in future studies. 
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