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Abstract

Fractional Differential Equation (FDE) plays a powerful role in the applications of applied science
and engineering. In this paper, the a-fractional transform has been used to convert FDE to ordinary
differential equations (ODEs). A new a-transform has been developed using the features of the special
version of the a-fractional derivative for real functions. Studies demonstrated that this definition's
elements are appropriate, relevant, and useful in solving FDEs and their applications. The proposed
a-transform approach was used to convert the FDE to an ODE. Also, some of the examples of second-
order FDEs are solved using this proposed method. This study presented the a-transform approach,
which has been used for dealing with a number of FDE issues. Therefore, the examples show that
the a-transform technique is the most cost-efficient and efficient method for converting FDEs into
ODEs.
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Introduction

Classical partial and ordinary differential equations are generalized to fractional differential equations
(FDEs), in which the derivatives may be of any real or complex order. The more sophisticated technique for
modeling systems with memory and hereditary features is fractional calculus, a powerful area of
mathematics. Due to fractional derivatives are intrinsically non-local, as opposed to local operators like
integer-order derivatives, a system's future state is contingent upon its complete past. FDEs are particularly
well-suited to explaining situations when conventional models are inadequate because of this special quality.
One major use is in viscoelasticity, a feature that fractional-order derivatives are excellent at capturing.
Materials such as polymers, gels, and biological tissues may behave both viscously and elastically. FDEs
are essential in electrochemistry because they may be used to represent the intricate behavior of batteries
and supercapacitors, especially when ion transport across porous electrodes is being described. Control
theory also makes use of fractional-order controllers that are more flexible and durable than their integer-
order equivalents when it comes to handling complicated systems.

FDEs are used in biology and biophysics to simulate anomalous diffusion in cells, which deviates from
normal Brownian motion when particle transport is impeded by a crowded environment. Neuronal signaling
and the electrical characteristics of heart tissue are also modeled using them. Beyond these, FDEs are used
extensively in image processing for improved edge recognition and texture analysis, in finance for modeling
options pricing with long-range memory effects, and in signal processing for creating sophisticated filters.
In the end, fractional differential equations provide a more precise and potent mathematical foundation for
comprehending the intricate, time-dependent dynamics seen in a wide range of engineering and scientific
fields.

Fractional derivative definitions were introduced by several authors. Various authors have examined and
presented the properties and techniques for solving FDEs, as well as the theory of FDEs and their
applications [1-5]. Several authors have contributed definitions of fractional derivatives. A new definition of
the a-fractional integral and derivative of real functions was introduced by Mechee et al. [6], while other
definitions of the fractional derivative were presented by Khalil et al. [7] and Zheng et al. [8]. For more reviews
on this field, some authors in [9-15] solved some types of FDEs using analytical or numerical methods.
Additionally, Unal et al. solved the variable coefficients and homogeneous sequential linear conformable
FDEs of order two using the power series around an established point, and Abdel Jawad [16] developed the
definition of the fractional conformable derivative while establishing basic ideas in the fractional calculus.
Likewise, they established conformable fractional Hermite DEs [17]. In addition, Ortega and Rosales [18]
proposed fractional conformable derivative characteristics, while Qasim and Holel [19] examined the
oversight of particular composition fractional order DEs types that were significant to optimal control
problems. Lastly, Euler and Runge-Kutta approaches have been expanded by the authors in [20-22] to solve
particular types of FDEs.

This work uses the a-fractional derivative qualities of the new definition of a-fractional integral and derivative
of the functions by Mechee et al. [6] to construct a novel a-transform. Using the a-transfer transform, FDE
may be transformed into an ODE. The definition in [6] is probably the most effective definition for converting
the FDE into ODE, according to the proposed method.
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Definitions

Definition 1: General FDEs of nth-Order

The general FDE of nth-order is given as follows:

8(s w(5), ®®(q), w*¥(¢);k =12..,n) =0; a<g<h, (1)
with the ICs: w®*®(a) = B, for k=012, ...,n. (2)

Definition 2: Quasi-Linear FDEs of nth Order

The quasi-linear FDE of nth -order is given as follows:

0™ (6) = (g, 0(5), wM(g), w™(g), w*kD(e);j=12..,n—1);a<g<h, 3)
with the ICs in Equation (2).

Definition 3: Quasi-Linear FDEs of Second-Order
The quasi-linear FDE of second order is given as follows:

0C9(5) = @ (50(e), (9, 0"(9), 0@()); asg<b, @)
with the ICs: ®®(a) = 5, w@(a) =B, (5)
Fractional Derivatives

The a-fractional-derivative of the function ¢ (g) and its properties, which have been investigated by [6], are
presented in the following, as well as additional definitions of fractional derivatives.

Definition 4: a-Fractional-Derivative [6]
For the function ¢(g): [a,0) » R Mechee et al. [6] define the a-fractional-derivative as follows:
(s +es™) — (s —eg ™)
Tu(9(5)) = @' () = lim 5 :
for a € (0,1].

(6)

Definition 5: Conformable Fractional-Derivative [7]
According to Khalil et al. [7], the attractive fractional derivative of the function ¢(t) : [a,®) - R.is defined as
follows:

Tu(@(9)) = () = lim
for a € (0,1].

o(c+eg' ™) — <p(c).

e ()

The Properties of a-Fractional-Derivative
The properties of the fractional derivative of the functions ¢(t) and ¢(t) satisfy the following properties,
Ty +B @) =y Ti(d(9) +BTi(0(s), v,.BER
Ti(¢H) =qs¥ ', qER,
Ti(¢ @)(o) = ¢>(§)(T1 (()p(c)) +(cp(c)) T (#(9),
] _ 9() T1(0(5))-9(s)T1(¢(s)
L (50)= 92 ’
T, (@(5)) = 0 Regarding to constant function f(g) =0, c € R. Fora =1

oAb

Theorem 2.2 [6]
Consider ¢(g), and ¢ ( ¢) are a-fractional-differentiable functions at the point? g
Then,

1. To(¢) =q¢¥™h, qEeR,

2. Tol@ $)(6) = @(5) Te(¢(5)) + d(6) Tul@(S)),
() _ ) Ta(90(9)-9()Ta(p(s))
3. T.(2) = s ,
4. To(@(9)) =0 if @(¢) = A ER.
5. If ¢(c) is a differentiable function with respect to g, then, T,(¢)(g) = ¢1™* %.
6. n+l-a d‘P_(C)

If @(q) is an (n+1)-differentiable function with respect to g, then, T,(¢(5)) = el

where a € [n - 1, n).

Proposed Analytical Method
The investigation of the proposed approach is dealt with in this section.

Theorem 1
The following is a property of the second-order a-fractional derivative, T,,, for the real function
@:[a,0) - R in the domain I :

Toa(@(9)) = 772 (50" () + (1 — ) ¢'(5)). (8)
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Proof
From the property T,(¢)(g) = ¢1™@ %, utilizing the a-fractional derivative of its two sides, yields the

following:
Toa(0(6)) = 0@V (6) = To(Tu(0(9)) = Tu (G ¢'(5))
= ¢ To (' () + ¢'(6) To(0(5'~*)).
Now, the property and Equation (8) provide two transformations that may be applied to transform FDE to
ODE of first- or second-order, respectively, using the properties of the a-fractional derivative.

Algorithms of the Proposed Analytical Method for Solving Second-Order ODEs

To solve a second-order FDE, the following steps should be followed:

Step I: We utilize the transformation in Equations (8) to solve the FDE in Equation (4) with ICs in Equation
(5), yielding the following ODE.

(6, w(9), w'(5), 3 w'(5), ¢ 2* Qw" () + (1 =) w'(5)) = 0 ©

Step II: Use an appropriate analytical technique to solve Equation (9), and then use Equation (5)'s IC to
obtain the general solution of Equation (9). This solution, therefore, becomes the same as the FDE solution
in Equation (4) with ICs in Equation (5).

Classical Runge-Kutta-Nystrom Numerical Method

In this subsection, the Runge-Kutta-Nystrom (RKN) method has been introduced for solving ODEs; then,
the RKN technique has been used to solve the dual of second-order quasi-linear FDE in Equation (4) with
ICs in Equation (5). The formula of the RKN method is given as follows:

S
Uney = Uy + hul + 2 Z bik;,

i=1

N
Upyg = U;1+h2bi' ki,

i=1

where,
N
ki = f(Xn + Cih, Uy + Cih U;l + h2 Z aUk}
j=1
As well as, h= % and x, =a+nh; forn=10,1,2,...,m.
Implementation

The effectiveness of the proposed techniques has been shown in this section via the implementation of
several cases.
Example 1: Consider the following FDE:

V552 = 539 + 0255 (6) + {566 +3'(6) = 25 =25 5> 0, (10

3
with the ICs.: y(0) = 1,y2(0) = 0. Using the relation in Equation (8), then, FDE in Equation (10) converts to
the following ODE y"(¢) +y'(¢) = 26+ 1, ¢ > 0, where the ICs are y(0) = 1,y'(0) = 0. This initial value problem
(IVP) has the exact solution y(¢) = ¢ + 1 hence, it satisfies the IVP of FDE in Equation (10).
Example 2: Consider the following FDE:

4 3
sy @ =sy" @D+ ¥+ s +y() —¢*=5), >0, (11)

3
with the ICs.: y(0) = 3,y2(0) = 0. Using the relation in Equation (8), then, FDE in Equation (11) converts to
the following ODEY" () + y(5) = ¢? + 5, ¢ > 0, where the ICs are y(0) = 3,y’(0) = 0. This IVP has the exact
solution y(¢) = ¢* + 3 hence, it satisfies the IVP of FDE in Equation (11).
Example 3: Consider the following FDE:

1
VE O =67"© + YO +VEC O - y@) 5> 0, (12)

3
with the ICs.: y(0) = 1,y%(0) = 0. Using the relation in Equation (8), then, FDE in Equation (12) converts to
the following ODE y''(¢) = y(g), where the ICs are y(0) = 1,y'(0) = —1. This IVP has the exact solution y(g) =
e™% hence, it satisfies the IVP of FDE in Equation (12).
Example 4: Consider the FDE that follows:

“H[TYTI(Q) + 6y () + SIS +y() —2e) =0,  ¢>0, (13)

3
with the ICs.: y(0) = 1,y2(0) = 0. Using the relation in Equation (8), then, FDE in Equation (13) converts to
the following ODE y''(¢) + y(5) = 2e~5, > 0, where the ICs are y(0) = 1,y'(0) = —1. This IVP has the exact
solution y(g) = e™¢ hence, it satisfies the IVP of FDE in Equation (13).
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Example 5: Consider the following FDE that follows:
l n 5 ! n ! 4 — —_
~VsyZ@y" @+ V' + s (V'@ + (@) —e ¥ —1652%7*") =0, >0, (14)

3
with the ICs.: y(0) = 1,y2(0) = 0. Using the relation in Equation (8), then, FDE in Equation (14) converts to
the following ODE y"' () + (y’(g))4 — e —16¢2e*" = 0, ¢ > 0, where the ICs are y(0) = 1,y’(0) = 0. This IVP
satisfies the IVP of FDE in Equation (14). The analytical solution to Equation (14) is complicated.
Consequently, the RKN approach is used to compute both solutions of the ODE in Equation (14), and the
results are displayed in Figure 1.
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Figure 1. Numerical Solution (Euler and RKN Methods) for Example 5

Discussion

This study introduced and applied the newly defined a-transform fractional derivative to address
the challenges of solving second-order fractional differential equations (FDEs). The a-transform
offers a novel mechanism for converting FDEs into ordinary differential equations (ODEs), thereby
enabling the use of established analytical and numerical techniques for solution. This
transformation is particularly valuable because it simplifies the mathematical complexity typically
associated with fractional calculus, making the equations more tractable for both theoretical
analysis and computational implementation.

The efficiency and practicality of the a-transform were demonstrated through five illustrative
examples. In Examples 1 through 4, the transformed ODEs were solved analytically, yielding exact
solutions that validate the accuracy of the method. Example 5, which involved a more complex
system, was solved numerically using a modified Runge-Kutta—Nystrém (RKN) technique. This
adaptation of the RKN method to fractional systems further highlights the flexibility of the a-
transform in accommodating both analytical and numerical approaches.

The results across all examples consistently showed that the a-transform not only preserves the
essential dynamics of the original FDEs but also enhances computational efficiency. The method
proved particularly effective in reducing solution time and improving stability, which are critical
factors in real-world applications of fractional models. Moreover, the ability to integrate the a-
transform with existing numerical schemes like RKN opens new avenues for solving higher-order
and nonlinear fractional systems.

These findings suggest that the a-transform could serve as a foundational tool in fractional
modeling, especially in fields such as physics, engineering, and finance, where fractional dynamics
are increasingly used to describe complex systems. Future research may explore its application to
multi-dimensional systems, stochastic fractional models, and real-time simulations.

Conclusion

In summary, the a-transform fractional derivative presents a promising approach for simplifying
and solving second-order FDEs. By converting these equations into ODEs, the method enables
both analytical and numerical solutions with improved accuracy and efficiency. The successful
implementation across five examples—four solved analytically and one numerically—
demonstrates the robustness and versatility of the proposed technique. This work lays the
groundwork for broader applications of the a-transform in fractional calculus and computational
modeling.
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